23 research outputs found

    Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements

    Get PDF
    BACKGROUND: Right atrial (RA) area predicts mortality in patients with pulmonary hypertension, and is recommended by the European Society of Cardiology/European Respiratory Society pulmonary hypertension guidelines. The advent of deep learning may allow more reliable measurement of RA areas to improve clinical assessments. The aim of this study was to automate cardiovascular magnetic resonance (CMR) RA area measurements and evaluate the clinical utility by assessing repeatability, correlation with invasive haemodynamics and prognostic value. METHODS: A deep learning RA area CMR contouring model was trained in a multicentre cohort of 365 patients with pulmonary hypertension, left ventricular pathology and healthy subjects. Inter-study repeatability (intraclass correlation coefficient (ICC)) and agreement of contours (DICE similarity coefficient (DSC)) were assessed in a prospective cohort (n = 36). Clinical testing and mortality prediction was performed in n = 400 patients that were not used in the training nor prospective cohort, and the correlation of automatic and manual RA measurements with invasive haemodynamics assessed in n = 212/400. Radiologist quality control (QC) was performed in the ASPIRE registry, n = 3795 patients. The primary QC observer evaluated all the segmentations and recorded them as satisfactory, suboptimal or failure. A second QC observer analysed a random subcohort to assess QC agreement (n = 1018). RESULTS: All deep learning RA measurements showed higher interstudy repeatability (ICC 0.91 to 0.95) compared to manual RA measurements (1st observer ICC 0.82 to 0.88, 2nd observer ICC 0.88 to 0.91). DSC showed high agreement comparing automatic artificial intelligence and manual CMR readers. Maximal RA area mean and standard deviation (SD) DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 is 92.4 ± 3.5 cm2, 91.2 ± 4.5 cm2 and 93.2 ± 3.2 cm2, respectively. Minimal RA area mean and SD DSC metric for observer 1 vs observer 2, automatic measurements vs observer 1 and automatic measurements vs observer 2 was 89.8 ± 3.9 cm2, 87.0 ± 5.8 cm2 and 91.8 ± 4.8 cm2. Automatic RA area measurements all showed moderate correlation with invasive parameters (r = 0.45 to 0.66), manual (r = 0.36 to 0.57). Maximal RA area could accurately predict elevated mean RA pressure low and high-risk thresholds (area under the receiver operating characteristic curve artificial intelligence = 0.82/0.87 vs manual = 0.78/0.83), and predicted mortality similar to manual measurements, both p < 0.01. In the QC evaluation, artificial intelligence segmentations were suboptimal at 108/3795 and a low failure rate of 16/3795. In a subcohort (n = 1018), agreement by two QC observers was excellent, kappa 0.84. CONCLUSION: Automatic artificial intelligence CMR derived RA size and function are accurate, have excellent repeatability, moderate associations with invasive haemodynamics and predict mortality

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Bu3SnH mediated oxidative radical cyclisation onto imidazoles and pyrroles

    No full text
    A new protocol using radical cyclisation has been developed for the synthesis of [1,2-c]-fused imidazoles and [1,2-a]-fused pyrroles. The intermediate nucleophilic N-alkyl radicals, generated using Bu3SnH from N-(omega-bromoalkyl) or N-[omega-(phenylselanyl)alkyl] imidazoles and pyrroles, undergo regioselective radical cyclisation onto the azole rings followed by oxidative re-aromatisation, (C) 1999 Elsevier Science Ltd. Ail rights reserved.</p

    Relay selection based clustering techniques for high density LTE networks

    No full text
    In very crowded areas, a large number of LTE users contained in a single cell will try to access services at the same time causing high load on the Base Station (BS). Some users may be blocked from getting their requested services due to this high load. Using a two-hop relay architecture can help in increasing the system capacity, increasing coverage area, decreasing energy consumption, and reducing the BS load. Clustering techniques can be used to configure the nodes in such two-layer topology. This paper proposes a new algorithm for relay selection based on the Basic Sequential Algorithmic Scheme (BSAS) along with power control protocol. Unlike other capacity improving techniques such as small cells and relay stations this approach does not require additional infrastructure. Instead, users themselves will act as a temporary relay stations. Modifications are implemented to the original BSAS to make it suitable for LTE environment and to improve its performance. The protocol for resource allocation and power control is implemented assuming a multi cell scenario. The algorithm is compared to other relaying and clustering schemes in addition to the conventional LTE. The simulation results show that the proposed algorithm has improved system capacity and energy consumption compared to other existing clustering/relaying schemes

    Clinical assessment of an AI tool for measuring biventricular parameters on cardiac MR

    No full text
    Introduction: Cardiac magnetic resonance (CMR) is of diagnostic and prognostic value in a range of cardiopulmonary conditions. Current methods for evaluating CMR studies are laborious and time-consuming, contributing to delays for patients. As the demand for CMR increases, there is a growing need to automate this process. The application of artificial intelligence (AI) to CMR is promising, but the evaluation of these tools in clinical practice has been limited. This study assessed the clinical viability of an automatic tool for measuring cardiac volumes on CMR. Methods: Consecutive patients who underwent CMR for any indication between January 2022 and October 2022 at a single tertiary centre were included prospectively. For each case, short-axis CMR images were segmented by the AI tool and manually to yield volume, mass and ejection fraction measurements for both ventricles. Automated and manual measurements were compared for agreement and the quality of the automated contours was assessed visually by cardiac radiologists. Results: 462 CMR studies were included. No statistically significant difference was demonstrated between any automated and manual measurements (p > 0.05; independent T-test). Intraclass correlation coefficient and Bland-Altman analysis showed excellent agreement across all metrics (ICC > 0.85). The automated contours were evaluated visually in 251 cases, with agreement or minor disagreement in 229 cases (91.2%) and failed segmentation in only a single case (0.4%). The AI tool was able to provide automated contours in under 90 s. Conclusions: Automated segmentation of both ventricles on CMR by an automatic tool shows excellent agreement with manual segmentation performed by CMR experts in a retrospective real-world clinical cohort. Implementation of the tool could improve the efficiency of CMR reporting and reduce delays between imaging and diagnosis
    corecore