61 research outputs found

    Stable diquark matter ?

    Full text link
    Two-quark correlations ({\it diquarks}) may play an important role in hadronic physics, particularly near the deconfinement point. This opens the possibility of a net energy gain by means of a (non-perturbative) quark pairing effect, perheps up to stabilize diquark droplets. We address in this work the possibility of a self-bound, stable state of bulk diquark matter.Comment: 10p. PlainTeX, 2 Figures available upon request. IAG-USP Report No 3

    Redshifting Rings of Power

    Full text link
    The cosmic microwave background (CMB) has provided a precise template for features in the linear power spectrum: the matter-radiation turnover, sound horizon drop, and acoustic oscillations. In a two dimensional power spectrum in redshift and angular space, the features appear as distorted rings, and yield simultaneous, purely geometric, measures of the Hubble parameter H(z) and angular diameter distance D_A(z) via an absolute version of the Alcock-Paczynski test. Employing a simple Fisher matrix tool, we explore how future surveys can exploit these rings of power for dark energy studies. High-z CMB determinations of H and D_A are best complemented at moderate to low redshift (z < 0.5) with a population of objects that are at least as abundant as clusters of galaxies. We find that a sample similar to that of the ongoing SDSS Luminous Red Galaxy (LRG) survey can achieve statistical errors at the ~5% level for D_A(z) and H(z) in several redshift bins. This, in turn, implies errors of sigma(w)=0.03-0.05 for a constant dark energy equation of state in a flat universe. Deep galaxy cluster surveys such as the planned South Pole Telescope (SPT) survey, can extend this test out to z~1 or as far as redshift followup is available. We find that the expected constraints are at the sigma(w)=0.04-0.08 level, comparable to galaxies and complementary in redshift coverage.Comment: 8 pages, 5 figures submitted to PR

    On the Low Surface Magnetic Field Structure of Quark Stars

    Full text link
    Following some of the recent articles on hole super-conductivity and related phenomena by Hirsch \cite{H1,H2,H3}, a simple model is proposed to explain the observed low surface magnetic field of the expected quark stars. It is argued that the diamagnetic moments of the electrons circulating in the electro-sphere induce a magnetic field, which forces the existing quark star magnetic flux density to become dilute. We have also analysed the instability of normal-superconducting interface due to excess accumulation of magnetic flux lines, assuming an extremely slow growth of superconducting phase through a first order bubble nucleation type transition.Comment: 24 pages REVTEX, one .eps figure, psfig.sty is include

    RX J1856.5-3754 as a possible Strange Star candidate

    Get PDF
    RX J1856.5-3754 has been proposed as a strange star candidate due to its very small apparent radius measured from its X-ray thermal spectrum. However, its optical emission requires a much larger radius and thus most of the stellar surface must be cold and undetectable in X-rays. In the case the star is a neutron star such a surface temperature distribution can be explained by the presence of a strong toroidal field in the crust (Perez-Azorin et al. 2006, Geppert et al. 2006). We consider a similar scenario for a strange star with a thin baryonic crust to determine if such a magnetic field induced effect is still possible.Comment: 4 pages, 4 figures; to appear in proceedings of the conference "Isolated Neutron Stars: From the Interior to the Surface", eds. S. Zane, R. Turolla, D. Page; Astrophysics & Space Science in pres

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc

    Evolutionary dynamics of group formation

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0 https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Group formation is a quite ubiquitous phenomenon across different animal species, whose individuals cluster together forming communities of diverse size. Previous investigations suggest that, in general, this phenomenon might have similar underlying reasons across the interested species, despite genetic and behavioral differences. For instance improving the individual safety (e.g. from predators), and increasing the probability to get food resources. Remarkably, the group size might strongly vary from species to species, e.g. shoals of fishes and herds of lions, and sometimes even within the same species, e.g. tribes and families in human societies. Here we build on previous theories stating that the dynamics of group formation may have evolutionary roots, and we explore this fascinating hypothesis from a purely theoretical perspective, with a model using the framework of Evolutionary Game Theory. In our model we hypothesize that homogeneity constitutes a fundamental ingredient in these dynamics. Accordingly, we study a population that tries to form homogeneous groups, i.e. composed of similar agents. The formation of a group can be interpreted as a strategy. Notably, agents can form a group (receiving a ‘group payoff’), or can act individually (receiving an ‘individual payoff’). The phase diagram of the modeled population shows a sharp transition between the ‘group phase’ and the ‘individual phase’, characterized by a critical ‘individual payoff’. Our results then support the hypothesis that the phenomenon of group formation has evolutionary roots.Peer reviewedFinal Published versio
    • 

    corecore