3,240 research outputs found

    Weak interactions and quasi-stable particle energy loss

    Get PDF
    We discuss the interplay between electromagnetic energy loss and weak interactions in the context of quasistable particle particle propagation through materials. As specific examples, we consider staus, where weak interactions may play a role, and taus, where they don't.Comment: 4 pages, 4 figures, to appear in the proceedings of the Second Workshop on TeV Particle Astrophysics (August 2006, Madison, WI

    Consequences of short range interactions between dark matter and protons in galaxy clusters

    Full text link
    Protons gain energy in short range collisions with heavier dark matter particles (DMPs) of comparable velocity dispersion. We examine the conditions under which the heating of baryons by scattering off DMPs can offset radiative cooling in the cores of galaxy clusters. Collisions with a constant cross section independent of the relative velocity of the colliding particles, cannot produce stable thermal balance. In this case, avoiding an unrealistic increase of the central temperatures yields the upper bound on the cross-section, \sigma_xp<10^-25 cm^2 (m_x/m_p), where m_x and m_p are the DMP and proton mass, respectively. A stable balance, however, can be achieved for a power law dependence on the relative velocity, V, of the form \sigma_xp \propto V^a with a<-3. An advantage of this heating mechanism is that it preserves the metal gradients observed in clusters.Comment: 7 pages, new calculations include

    Evidence for a Mixed Mass Composition at the ‘ankle’ in the Cosmic-ray Spectrum

    Get PDF
    We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the ‘ankle’ at lg(E/eV) = 18.5–19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A \u3e 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoredas the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth

    Tribal Water Quality Standards: Are There Any Limits

    Get PDF
    Thermoelectric generators (TEG) directly convert heat energy into electrical energy. The impediments as to why this technology has not yet found extensive application are the low conversion efficiency and high costs per watt. On the one hand, the manufacturing process is a cost factor. On the other, the high-­‐priced thermoelectric (TE) materials have an enormous impact on the costs per watt. In this thesis both factors will be examined: the production process and the selection of TE materials. Technical screen printing is a possible way of production, because this method is very versatile with respect to the usable materials, substrates as well as printing inks. The organic conductor PEDOT:PSS offers reasonable thermoelectric properties and can be processed very well in screen printing. It was demonstrated by prototypes of fully printed TEGs that so-­‐called vertical printed TEGs are feasible using standard graphic arts industry processes. In addition, the problems that occur with print production of TEGs are identified. Finally, approaches to solve these problems are discussed

    The fate of ultrahigh energy nuclei in the immediate environment of young fast-rotating pulsars

    Get PDF
    Young, fast-rotating neutron stars are promising candidate sources for the production of ultrahigh energy cosmic rays (UHECRs). The interest in this model has recently been boosted by the latest chemical composition measurements of cosmic rays, that seem to show the presence of a heavy nuclear component at the highest energies. Neutrons stars, with their metal-rich surfaces, are potentially interesting sources of such nuclei, but some open issues remain: 1) is it possible to extract these nuclei from the star's surface? 2) Do the nuclei survive the severe conditions present in the magnetosphere of the neutron star? 3) What happens to the surviving nuclei once they enter the wind that is launched outside the light cylinder? In this paper we address these issues in a quantitative way, proving that for the most reasonable range of neutron star surface temperatures (T<107T<10^7\,K), a large fraction of heavy nuclei survive photo-disintegration losses. These processes, together with curvature losses and acceleration in the star's electric potential, lead to injection of nuclei with a chemical composition that is mixed, even if only iron is extracted from the surface. We show that under certain conditions the chemical composition injected into the wind region is compatible with that required in previous work based on purely phenomenological arguments (typically 50%\sim 50\% protons, 30%\sim 30\% CNO and 20%\sim 20\% Fe), and provides a reasonable explanation of the mass abundance inferred from ultra high energy data.Comment: 15 pages, 3 figures, accepted in JCAP, minor modification

    Ultrahigh Energy Cosmic Rays and Black Hole Mergers

    Full text link
    The recent detection of the gravitational wave source GW150914 by the LIGO collaboration motivates a speculative source for the origin of ultrahigh energy cosmic rays as a possible byproduct of the immense energies achieved in black hole mergers, provided that the black holes have spin as seems inevitable and there are relic magnetic fields and disk debris remaining from the formation of the black holes or from their accretion history. We argue that given the modest efficiency <0.01< 0.01 required per event per unit of gravitational wave energy release, merging black holes potentially provide an environment for accelerating cosmic rays to ultrahigh energies.Comment: 4 pages, version to appear in ApJ Lett., minor changes, but one significant new point: connection made with fast radio burst

    Four Zuni-Mountain Miniatures

    Get PDF
    My wife and I bought and fenced 20 acres of Zuni-Mountain land, to allow it to recover from years of overgrazing. I reveled in the beauty and used the piece as a kind of journal. Back in Albuquerque, I could recall the feel of the place in different seasons and at different times of day

    The DarkSide project

    Get PDF
    DarkSide is a graded experimental project based on radiopure argon, and is now, and will be, used in direct dark matter searches. The present DarkSide-50 detector, operating at the Gran Sasso National Laboratory, is a dual-phase, 50 kg, liquid argon time-projection-chamber surrounded by an active liquid scintillator veto. It is designed to be background free in 3 years of operation. DS-50 performances, when filled with atmospheric argon, are reporte
    corecore