46 research outputs found

    Notch Signaling Controls the Differentiation of Transporting Epithelia and Multiciliated Cells in the Zebrafish Pronephros

    Get PDF
    Epithelial tubules consist of multiple cell types that are specialized for specific aspects of organ function. In the zebrafish pronephros, multiciliated cells (MCCs) are specialized for fluid propulsion, whereas transporting epithelial cells recover filtered-blood solutes. These cell types are distributed in a \u27salt-and-pepper\u27 fashion in the pronephros, suggesting that a lateral inhibition mechanism may play a role in their differentiation. We find that the Notch ligand Jagged 2 is expressed in MCCs and that notch3 is expressed in pronephric epithelial cells. Morpholino knockdown of either jagged 2 or notch3, or mutation in mind bomb (in which Notch signaling is impaired), dramatically expands ciliogenic gene expression, whereas ion transporter expression is lost, indicating that pronephric cells are transfated to MCCs. Conversely, ectopic expression of the Notch1 a intracellular domain represses MCC differentiation. Gamma-secretase inhibition using DAPT demonstrated a requirement for Notch signaling early in pronephric development, before the pattern of MCC differentiation is apparent. Strikingly, we find that jagged 2 knockdown generates extra cilia and is sufficient to rescue the kidney cilia mutant double bubble. Our results indicate that Jagged 2/Notch signaling modulates the number of multiciliated versus transporting epithelial cells in the pronephros by way of a genetic pathway involving repression of rfx2, a key transcriptional regulator of the ciliogenesis program

    Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes

    Get PDF
    AbstractPodocytes are specialized cells of the kidney that form the blood filtration barrier in the kidney glomerulus. The barrier function of podocytes depends upon the development of specialized cell–cell adhesion complexes called slit-diaphragms that form between podocyte foot processes surrounding glomerular blood vessels. Failure of the slit-diaphragm to form results in leakage of high molecular weight proteins into the blood filtrate and urine, a condition called proteinuria. In this work, we test whether the zebrafish pronephros can be used as an assay system for the development of glomerular function with the goal of identifying novel components of the slit-diaphragm. We first characterized the function of the zebrafish homolog of Nephrin, the disease gene associated with the congenital nephritic syndrome of the Finnish type, and Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome. Zebrafish nephrin and podocin were specifically expressed in pronephric podocytes and required for the development of pronephric podocyte cell structure. Ultrastructurally, disruption of nephrin or podocin expression resulted in a loss of slit-diaphragms at 72 and 96 h post-fertilization and failure to form normal podocyte foot processes. We also find that expression of the band 4.1/FERM domain gene mosaic eyes in podocytes is required for proper formation of slit-diaphragm cell–cell junctions. A functional assay of glomerular filtration barrier revealed that absence of normal nephrin, podocin or mosaic eyes expression results in loss of glomerular filtration discrimination and aberrant passage of high molecular weight substances into the glomerular filtrate

    TRPP2 and TRPV4 form a polymodal sensory channel complex

    Get PDF
    The primary cilium has evolved as a multifunctional cellular compartment that decorates most vertebrate cells. Cilia sense mechanical stimuli in various organs, but the molecular mechanisms that convert the deflection of cilia into intracellular calcium transients have remained elusive. Polycystin-2 (TRPP2), an ion channel mutated in polycystic kidney disease, is required for cilia-mediated calcium transients but lacks mechanosensitive properties. We find here that TRPP2 utilizes TRPV4 to form a mechano- and thermosensitive molecular sensor in the cilium. Depletion of TRPV4 in renal epithelial cells abolishes flow-induced calcium transients, demonstrating that TRPV4, like TRPP2, is an essential component of the ciliary mechanosensor. Because TRPV4-deficient zebrafish and mice lack renal cysts, our findings challenge the concept that defective ciliary flow sensing constitutes the fundamental mechanism of cystogenesis

    The FERM protein EPB41L5 regulates actomyosin contractility and focal adhesion formation to maintain the kidney filtration barrier

    Get PDF
    Podocytes form the outer part of the glomerular filter, where they have to withstand enormous transcapillary filtration forces driving glomerular filtration. Detachment of podocytes from the glomerular basement membrane precedes most glomerular diseases. However, little is known about the regulation of podocyte adhesion in vivo. Thus, we systematically screened for podocyte-specific focal adhesome (FA) components, using genetic reporter models in combination with iTRAQ-based mass spectrometry. This approach led to the identification of FERM domain protein EPB41L5 as a highly enriched podocyte-specific FA component in vivo. Genetic deletion of Epb41l5 resulted in severe proteinuria, detachment of podocytes, and development of focal segmental glomerulosclerosis. Remarkably, by binding and recruiting the RhoGEF ARGHEF18 to the leading edge, EPB41L5 directly controls actomyosin contractility and subsequent maturation of focal adhesions, cell spreading, and migration. Furthermore, EPB41L5 controls matrix-dependent outside-in signaling by regulating the focal adhesome composition. Thus, by linking extracellular matrix sensing and signaling, focal adhesion maturation, and actomyosin activation EPB41L5 ensures the mechanical stability required for podocytes at the kidney filtration barrier. Finally, a diminution of EPB41L5-dependent signaling programs appears to be a common theme of podocyte disease, and therefore offers unexpected interventional therapeutic strategies to prevent podocyte loss and kidney disease progression

    Telemedically Supported Case Management of Living-Donor Renal Transplant Recipients to Optimize Routine Evidence-Based Aftercare: A Single-Center Randomized Controlled Trial

    No full text
    Improving mid-term and long-term outcomes after solid organ transplantation is imperative, and requires both state-of-the-art transplant surgery and optimization of routine, evidence-based aftercare. This randomized, controlled trial assessed the effectiveness of standard aftercare versus telemedically supported case management, an innovative aftercare model, in 46 living-donor renal transplant recipients during the first posttransplant year. The model includes three components: (i) chronic care case management initiated after discharge, (ii) case management initiated in emerging acute care situations, and (iii) a telemedically equipped team comprising a transplant nurse case manager and two senior transplant physicians (nephrologist, surgeon). Analyses revealed a reduction of unplanned inpatient acute care, with considerable cost reductions, in the intervention group. The prevalence of nonadherence over the 1-year study period was 17.4% in the intervention group versus 56.5% in the standard aftercare group (p = 0.013). Only the intervention group achieved their pre-agreed levels of adherence, disease-specific quality of life, and return to employment. This comparative effectiveness study provides the basis for multicenter study testing of telemedically supported case management with the aim of optimizing posttransplant aftercare. The trial was registered with the German Clinical Trials Register (www.DRKS.de), DKRS00007634

    Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis

    No full text
    Cilia, as motile and sensory organelles, have been implicated in normal development, as well as diseases including cystic kidney disease, hydrocephalus and situs inversus. In kidney epithelia, cilia are proposed to be non-motile sensory organelles, while in the mouse node, two cilia populations, motile and non-motile have been proposed to regulate situs. We show that cilia in the zebrafish larval kidney, the spinal cord and Kupffer's vesicle are motile, suggesting that fluid flow is a common feature of each of these organs. Disruption of cilia structure or motility resulted in pronephric cyst formation, hydrocephalus and left-right asymmetry defects. The data show that loss of fluid flow leads to fluid accumulation, which can account for organ distension pathologies in the kidney and brain. In Kupffer's vesicle, loss of flow is associated with loss of left-right patterning, indicating that the 'nodal flow' mechanism of generating situs is conserved in non-mammalian vertebrates

    A Complex of BBS1 and NPHP7 Is Required for Cilia Motility in Zebrafish

    No full text
    <div><p>Bardet-Biedl syndrome (BBS) and nephronophthisis (NPH) are hereditary autosomal recessive disorders, encoded by two families of diverse genes. BBS and NPH display several overlapping phenotypes including cystic kidney disease, retinitis pigmentosa, liver fibrosis, <i>situs inversus</i> and cerebellar defects. Since most of the BBS and NPH proteins localize to cilia and/or their appendages, BBS and NPH are considered ciliopathies. In this study, we characterized the function of the transcription factor Nphp7 in zebrafish, and addressed the molecular connection between BBS and NPH. The knockdown of zebrafish <i>bbs1</i> and <i>nphp7.2</i> caused similar phenotypic changes including convergent extension defects, curvature of the body axis, hydrocephalus, abnormal heart looping and cystic pronephros, all consistent with an altered ciliary function. Immunoprecipitation assays revealed a physical interaction between BBS1 and NPHP7, and the simultaneous knockdown of z<i>bbs1</i> and z<i>nphp7.2</i> enhanced the cystic pronephros phenotype synergistically, suggesting a genetic interaction between z<i>bbs1</i> and z<i>nphp7.2 in vivo</i>. Deletion of zBbs1 or zNphp7.2 did not compromise cilia formation, but disrupted cilia motility. Although NPHP7 has been shown to act as transcriptional repressor, our studies suggest a crosstalk between BBS1 and NPHP7 in regulating normal function of the cilium.</p></div

    The Subcellular Localization of TRPP2 Modulates Its Function

    No full text
    TRPP2, also known as polycystin-2, is a calcium permeable nonselective cation channel that is mutated in autosomal dominant polycystic kidney disease but has also been implicated in the regulation of cardiac development, renal tubular differentiation, and left-to-right (L-R) axis determination. For obtaining further insight into how TRPP2 exerts tissue-specific functions, this study took advantage of PACS-dependent trafficking of TRPP2 in zebrafish larvae. PACS proteins recognize an acidic cluster within the carboxy-terminal domain of TRPP2 that undergoes phosphorylation and mediate retrieval of TRPP2 to the Golgi and endoplasmic reticulum (ER). The interaction of human TRPP2 with PACS proteins can be inhibited by a Ser812Ala mutation (TRPP2S812A), thereby allowing TRPP2 to reach other subcellular compartments, and enhanced by a Ser812Asp mutation (TRPP2S812D), thereby trapping TRPP2 in the ER. It was found that the TRPP2S812A mutant rescued cyst formation of TRPP2-deficient zebrafish larvae to the same degree as wild-type TRPP2, whereas the TRPP2S812D mutant was significantly more effective in normalizing the distorted body axis of TRPP2-deficient fish. Surprisingly, the TRPP2S812D mutant rescued the abnormalities of L-R asymmetry more effectively than either wild-type or TRPP2S812A, suggesting that the ER localization of TRPP2 plays an important role in the development of normal L-R asymmetry. Taken together, these findings support the hypothesis that TRPP2 assumes distinct subcellular localizations to exert tissue-specific functions

    Polycystin-2 immunolocalization and function in zebrafish

    No full text
    Polycystin-2 functions as a cation-permeable transient receptor potential ion channel in kidney epithelial cells and when mutated results in human autosomal dominant polycystic kidney disease. For further exploration of the in vivo functions of Polycystin-2, this study examined its expression and function during zebrafish embryogenesis. pkd2 mRNA is ubiquitously expressed, and its presence in the larval kidney could be confirmed by reverse transcription-PCR on isolated pronephroi. Immunostaining with anti-zebrafish Polycystin-2 antibody revealed protein expression in motile kidney epithelial cell cilia and intracellular cell membranes. Intracellular localization was segment specific; in the proximal nephron segment, Polycystin-2 was localized to basolateral cell membranes, whereas in the caudal pronephric segment, Polycystin-2 was concentrated in subapical cytoplasmic vesicles. Polycystin-2 also was expressed in muscle cells and in a variety of sensory cells that are associated with mechanotransduction, including cells of the ear, the lateral line organ, and the olfactory placodes. Disruption of Polycystin-2 mRNA expression resulted in pronephric kidney cysts, body axis curvature, organ laterality defects, and hydrocephalus-defects that could be rescued by expression of a human PKD2 mRNA. In-frame deletions in the first extracellular loop and C-terminal phosphofurin acidic cluster sorting protein-1 (PACS-1) binding sites in the cytoplasmic tail caused Polycystin-2 mislocalization to the apical cell surface. Unlike zebrafish intraflagellar transport protein (IFT) mutants, cyst formation was not associated with cilia defects and instead correlated with reduced kidney fluid output, expansion of caudal duct apical cell membranes, and occlusion of the caudal pronephric nephron segment

    Depletion of zBbs1 and zNphp7.2 caused defects in heart looping.

    No full text
    <p>To examine organ laterality defects, zebrafish embryos were examined for changes in heart looping. (A) In situ hybridisation (<i>myosin light chain 7; myl7</i>) of both z<i>bbs1</i> and z<i>nphp7.2</i> morphant embryos at 55 hpf showed defective heart looping. (heart looping to the right (R = normal), without heart looping (mid) and looping to the left (L = inversed)) (B) Whereas the hearts of control embryos showed more than 90% rightward looping, approximately 50% of zBbs1-depleted embryos and (C) 35–75% of zNphp7.2-depleted embryos had <i>situs inversus</i> or mid position of the heart. The numbers in the brackets (n) are the numbers of total embryos which were examined.</p
    corecore