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Podocytes form the outer part of the glomerular filter, where they
have to withstand enormous transcapillary filtration forces driving
glomerular filtration. Detachment of podocytes from the glomerular
basement membrane precedes most glomerular diseases. However,
little is known about the regulation of podocyte adhesion in vivo.
Thus, we systematically screened for podocyte-specific focal adhe-
some (FA) components, using genetic reporter models in combina-
tion with iTRAQ-based mass spectrometry. This approach led to
the identification of FERM domain protein EPB41L5 as a highly
enriched podocyte-specific FA component in vivo. Genetic deletion
of Epb41l5 resulted in severe proteinuria, detachment of podo-
cytes, and development of focal segmental glomerulosclerosis.
Remarkably, by binding and recruiting the RhoGEF ARGHEF18
to the leading edge, EPB41L5 directly controls actomyosin contrac-
tility and subsequent maturation of focal adhesions, cell spread-
ing, and migration. Furthermore, EPB41L5 controls matrix-
dependent outside-in signaling by regulating the focal adhesome
composition. Thus, by linking extracellular matrix sensing and
signaling, focal adhesion maturation, and actomyosin activation
EPB41L5 ensures the mechanical stability required for podocytes
at the kidney filtration barrier. Finally, a diminution of EPB41L5-
dependent signaling programs appears to be a common theme of
podocyte disease, and therefore offers unexpected interven-
tional therapeutic strategies to prevent podocyte loss and kidney
disease progression.
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Glomerular epithelial cells or podocytes represent a pericyte-
like cell type establishing the kidney filtration barrier in

combination with endothelial cells and the basement membrane
(1, 2). These cells exhibit a strictly polarized morphology char-
acterized by a large cell body and extending primary and sec-
ondary foot processes, which enclose glomerular capillaries (3).
The slit diaphragm, a specialized and unique cell–cell contact,
connects interdigitating foot processes and confines the basolateral
membrane compartment of podocytes (2, 4).
Because of the constant exposure of podocytes to filtration

forces, tight adherence to the basement membrane is required to
prevent detachment into Bowman’s capsule. As a consequence,
loss of podocytes from the glomerular basement membrane (GBM)
is a major contributing factor to the progression of glomerular and
chronic kidney disease (5–7).

On a molecular level, a multitude of adhesion receptors in-
cluding heterodimeric integrins mediate interaction of cells with
the surrounding extracellular matrix (ECM) or the basement
membrane (8, 9). Integrin receptors are linked to an intracellular
multiprotein complex, collectively named the integrin adhesome,
constituting various adaptor proteins, GTPases, kinases, and
phosphatases (9). One common form of integrin-mediated adhe-
sion is focal adhesions (FAs), which have been extensively studied
in cultured cells (9). Functionally, FAs support the physical inter-
action of cells to the ECM, establish connection to the actomyosin
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cytoskeleton, and provide a signaling hub to fine-tune regulatory
cascades and cellular functions. The clinical relevance of the
adhesome for podocyte function was recently demonstrated by the
identification of mutations in the Integrin alpha3 gene, causing
glomerular and skin disease in affected patients (10). In addition,
other focal adhesome components such as INTEGRIN-beta1 and
INTEGRIN-LINKED KINASE (ILK), as well as other core focal
adhesome components, were identified to be critical for podo-
cyte maintenance (11–15).
Despite those previous advances, there is still no unifying

pathophysiological concept of the role of FAs in podocyte bi-
ology, allowing for the design of targeted diagnostic, as well as
therapeutic, approaches. In addition, a comprehensive descrip-
tion of podocyte-specific focal adhesome components is still
lacking. To identify cell-specific adhesome modulators, we de-
veloped a method for large-scale isolation of highly purified
podocyte cell populations from murine glomeruli (16). Using
iTRAQ-based quantitative MS technology, we developed an
unprecedented in vivo description of almost 3,500 podocyte
proteins. We used these data and applied bioinformatic filtering
approaches to identify components of the podocyte FA complex.
This approach enabled the identification of the FERM-domain
protein EPB41L5. Characterization of this podocyte-specific
molecule offered unexpected insights into the biology, function,
and disease mechanism of the kidney filtration barrier.

Results
Analysis of the Podocyte-Enriched Adhesome Identifies FERM-Domain
Protein EBP41L5 as a Podocyte-Specific FA Component. One key
feature of podocytes is the tightly regulated adhesion to the glo-
merular basement membrane (Fig. 1A) to maintain the filtration
barrier (6). Detachment of podocytes from the glomerular base-
ment membrane is a common hallmark of late-stage glomerular
disease (Fig. 1B), suggesting an involvement of adhesome com-
ponents (SI Appendix, Fig. S1). FAs are multiprotein complexes
that sense the ECM environment, integrate incoming signals, and
mediate required contractile forces for adhesion adjustment (Fig.
1D) (9). To identify podocyte adhesome-associated proteins, we
made use of a genetically encoded reporter mouse system (Fig. 1C).
After FACS sorting, GFP+ podocyte cell populations were sub-
jected to iTRAQ-based quantitative mass spectrometry (Fig. 1C).
We identified nearly 3,500 proteins using this approach, and
ranked those according to their detection rates (relative to non-
podocyte cells; Dataset S1). Pathway and process analysis revealed
a high enrichment of integrin-mediated-signaling-associated pro-
teins in podocytes compared with the nonpodocyte fraction (Fig.
1E, SI Appendix, Fig. S2, and Dataset S1). After selection for
enriched proteins, a filtering step for FA gene ontology terms was
implemented, resulting in a list of 56 enriched, presumptive FA
proteins. In addition to previously described integrins (ITGA3,
ITGB5, and ITGAV) and well-established actin-cross-linkers such

Fig. 1. Analysis of the podocyte-enriched adhesome
identifies EBP41L5. (A) Podocytes reside on the outer
surface of glomerular capillaries and attach via their
foot processes to the glomerular basement mem-
brane. (B) Schematic depicting different stages of
podocyte damage and restructuring of FA complexes
(C) Scheme for the generation of hNPHS2Cre*Tom.
GFP-reporter mice. Cre expression under the specific
hNPHS2 promotor resulted in selective expression of
GFP in the podocyte population. Isolated GFP+ cell
populations were further processed for iTRAQ-based
MS analysis. (D) FAs are composed of different
classes of scaffold and signaling proteins such as
GTPases, specific kinases, or structural linker mole-
cules (A, integrin receptors; B, adaptor proteins and
enzymes; C, actomyosin cytoskeleton). (E) Mapping
of the podocyte-enriched FA complex after filtering
of primary data sets against the gene ontology term
FA. Previously identified proteins involved in human
disease or analyzed in rodent models are highlighted
by dotted circles. Via clustering resulting from en-
richment scores, a subset of proteins were selected as
highly enriched (yellow circles; for enrichment scores
and selected proteins, see Dataset S1). ECM, extracel-
lular matrix; FA, focal adhesion; FACS, fluorescence-
activated cell sorting; GBM, glomerular basement
membrane; GN,glomerulonephritis; iTRAQ, isobaric
tag for relative and absolute quantitation.
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as ACTININ-4, we identified recently discovered GTPase modu-
lators such as ARHGAP24 (Fig. 1E) (17). We further refined our
initial list by integrating recently published experimental data (18)
and ended up with a list of 182 potential podocyte-enriched FA
proteins (Dataset S1). EPB41L5 appeared as the top enriched
protein in our candidate approach after applying different filtering
steps for FA-associated protein domains (Dataset S1).

EPB41L5 Localizes to FAs in Vivo. To validate results of our pro-
teome approach, we used mRNA in situ hybridization to develop
a specific expression profile for the top candidate Epb41l5 during
murine development. Prenatally, Epb41l5 expression was restricted
to the brain, lung, and kidney (Fig. 2A and SI Appendix, Fig. S3). In
the kidney, expression was particularly strong in the glomeruli at
embryonic stage E14.5 (embryonic day 14.5) (Fig. 2A and SI Ap-
pendix, Fig. S3). Immunofluorescence of EPB41L5 further con-
firmed this expression in rodent as well as human podocytes (SI
Appendix, Fig. S3). Glomerular epithelial cells undergo a dramatic
change in cellular morphology during development (19, 20). To
specifically localize EPB41L5 during this polarization process, we
used a set of well-established polarity markers in combination with
EPB41L5. Here, EPB41L5 showed a predominant colocalization
with the basolateral marker SCRIBBLE, but not with the apical
marker PODOCALYXIN or the tight junction marker PAR3 (SI
Appendix, Fig. S4) (21). Using immunogold electron microscopy
confirmed that bona fide FA components such as PAXILLIN and

ZYXIN predominantly localized at a basal position of podocyte foot
processes (Fig. 2 B–D). EPB41L5 showed an overlapping localiza-
tion pattern in close proximity to the glomerular basement mem-
brane (Fig. 2 E and F). Recently, the super resolution microscopy
technique stochastic optical reconstruction microscopy was suc-
cessfully applied to visualize the nanoscale composition of the
glomerular basement membrane (22). Using this technique en-
abled the detection of EPB41L5 colocalizing with the bona fide FA
component INTEGRIN-beta1, whereas no overlap was detectable
with the apical marker protein PODOCALYXIN (Fig. 2 G–L).
Altogether, these different imaging modalities highlight the
basolateral, typical FA localization pattern for EPB41L5 in vivo.
Remarkably, an altered localization and coarse intensity pattern
was detected in biopsy samples from human patients with focal
segmental glomerulosclerosis or diabetic nephropathy for EPB41L5
(SI Appendix, Fig. S5). These observations were furthermore cor-
roborated by mRNA expression analysis for respective disease entities
from open source databases, as well as experimental mouse models
(SI Appendix, Figs. S5 and S6). Altogether, these data indicate that
EPB41L5 is a highly sensitive FA component of podocytes
and appears also to be drastically affected in human glomerular
disease entities.

Loss of Epb41l5 Causes Nephrotic Syndrome, Renal Failure, and
Lethality. To test for the functional relevance of the loss of
Epb41l5 expression, we generated a conditional knockout model

Fig. 2. EPB41L5 localizes at FAs in vivo. (A) In situ hybridization revealed that Epb41l5 is exclusively expressed in developing glomeruli of the kidney at
embryonic stages E14.5. (B–F) Immunogold electron microscopy for core FA components revealed predominant basal localization toward the GBM in wild-
type mice. EPB41L5 concordantly localized basally of foot processes. Ur, urinary pole; FP, foot processes; GBM, glomerular basement membrane; Cap, capillary;
arrows, gold particles; dotted lines, FP morphology. (G–L) Stochastic optical reconstruction microscopy of glomeruli, using PODOCALYXIN (apical marker) and
INTEGRIN-beta1 (basal marker) in combination with EPB41L5, demonstrated close proximity and colocalization of EPB41L5 with the FA compartment (as
indicated by ITGB1; boxed regions indicate areas of zoomed details).
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using standardized loxP technique (Fig. 3 A–D and SI Appendix,
Fig. S7). Glomerular epithelial cells contribute to the mainte-
nance of the kidney filtration barrier, and levels of proteinuria
represent a sensitive readout system in terms of podocyte func-
tion (2). Analysis of Epb41l5fl/fl*NPHS2Cre animals revealed
severe proteinuria indicated by albumin/creatinine ratios greater
than 100 compared with wild-type animals. Proteinuria in those
mice was already present at birth and remained at high levels for
the whole observational period (Fig. 3E). As a result of high-
grade proteinuria and progressing renal failure (as demonstrated
by pronounced glomerulosclerosis; Fig. 3 J and K and SI Ap-
pendix, Fig. S8), respective knockout animals showed decreased
weight gain compared with control animals (Fig. 3F). The severe
phenotype in terms of proteinuria resulted in premature death of
Ebp41l5 knockout animals, reflected by dramatically reduced
survival by 50% 2 wk after birth (Fig. 3G). Morphological
analysis of kidney sections revealed dilated tubules with an ac-
cumulation of proteinaceous casts, reflecting severe proteinuria
in knockout animals (Fig. 3 H–K and SI Appendix, Fig. S8).
Given the basolateral localization of EPB41L5 in glomerular
epithelial cells, we sought to directly determine the potential
influence of EPB41L5 on podocyte cell morphology. Although in
wild-type animals, interdigitating FPs were regularly separated
by slit diaphragms, Epb41l5 knockout podocytes displayed a
global fusion of FPs at P0 (SI Appendix, Fig. S9). Furthermore,
slit diaphragms were either not detectable or dislocated to a more
apical position (SI Appendix, Fig. S9), but there were no obvious
changes in apico-basal compartmentalization (SI Appendix, Fig.
S10). Strikingly, massive podocyte detachment was detectable in
EPB41L5 knockout animals, as demonstrated by decreased numbers

of podocytes per glomerulus, as well as increased levels of detached
podocytes in the urine (Fig. 3 L–O and SI Appendix, Fig. S10). To
test the effect of EPB41L5 in already completely maturated podo-
cytes, the conditional EPB41L5 floxed allele was intercrossed to a
podocyte-specific, doxycycline-dependent inducible Cre-system (SI
Appendix, Fig. S11 and S12). Induction of Cre-activity was per-
formed in 4-wk-old animals for a period of 2 wk (SI Appendix, Fig.
S11). Remarkably, 1 wk after induction, increased levels of pro-
teinuria already were detectable in knockout animals (SI Appendix,
Fig. S11). In agreement with the NPH2Cre line, inducible knockout
animals developed signs of progressive focal segmental sclerosis and
foot process effacement (SI Appendix, Fig. S11 and S12). These
alterations were accompanied by altered localization and decreased
signal intensity for NEPHRIN, PODOCIN, and SNYAPTOPODIN,
whereas the polarity molecule PAR3 exhibited no significant changes
(SI Appendix, Fig. S12). Together, these findings underline the
uttermost importance of EPB41L5 for developing, as well as fully
maturated, podocytes in vivo.
To gain mechanistic insights into EPB41L5 function in podocytes,

we used a recently established method for isolation of primary
podocytes from control and EPB41L5-deficient animals (Fig. 1C)
(23). As expected, EPB41L5 displayed on a subcellular level a
typical FA localization pattern close to the cell border (Fig. 3P).
Interestingly, a pronounced decrease in migratory function was
detected in primary knockout podocytes when seeded on colla-
gen IV coated surfaces (SI Appendix, Fig. S13).

EPB41L5 Controls FA Maturation and Cellular Spreading. Because
primary podocytes are only of limited availability, we used CRISPR/
Cas9 genome editing technology to generate EPB41L5-deficient

Fig. 3. Podocyte-specific knockout of Epb41l5 cau-
ses nephrotic syndrome and lethality. (A) Schematic
illustrating the generation of a podocyte-specific
knockout mouse (B and C) Immunofluorescence
staining confirmed that EPB41L5 protein is not de-
tectable in the podocyte compartment in respective
knockout mice. (D) Western blot on glomerular ly-
sates from either control or respective knockout
animals revealed that EPB41L5 protein is completely
abolished. (E and F ) Proteinuria measurements
demonstrate a drastic increase of proteinuria in
Epb41l5 knockout animals beginning at P0 (at least
n = 7; Dataset S3), accompanied by decreased body
weight gain (at least n = 10 animals per group; SI
Appendix, Dataset S3). (G) Kaplan-Meier analysis
indicated premature death of Epb41l5 knockout
animals (at least n = 15; Dataset S3). (H–K) Histology
of wild-type and Epb41l5fl/fl*NPHS2Cre kidney sec-
tions revealed proteinaceous casts (black arrows),
dilated tubules (black arrowheads), mesangial pro-
liferation (yellow asterisk), and mesangiolysis (yellow
arrows). (L–O) PAS and immunofluorescence staining
for WT-1 demonstrated detachment of podocytes in
Epb41l5 knockout animals. Quantification of WT-1-
positive cells in KO animals at 3 wk of age (n = 3 animals
for each genotype; Dataset S3). (P) EPB41L5 localized
in a typical FA pattern in primary wild-type podocytes
(white box indicates zoom-in; red arrows indicate
FAs). ACR, albumin to creatinine ratio.
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immortalized human podocyte cell lines. After validation of
specific gRNAs for the human EPB41L5 locus (targeting exon
2), we transfected immortalized human podocytes and isolated
isogenetic clones. These clones were subsequently sequenced for
deleterious mutations, and knockout efficiency was finally con-
firmed with Western blot (Fig. 4 A and B and SI Appendix, Fig.
S13). As FAs are critically involved in dynamic cell–ECM in-
teractions, we further tested for migration behavior and cellular
adhesion in wild-type and respective knockout clones. Here, two
independent EPB41L5 knockout clones showed a pronounced
defect in migration, as well as adhesion, when plated on collagen
IV-coated ECM substratum (Fig. 4 C–E and SI Appendix, Fig.
S13). The observation of impaired migration and adhesion im-
plicated potential dysfunction in FA dynamics as a result of loss
of EPB41L5. Therefore, we assessed cellular spreading and de-
tected significant impairment of EPB41L5 knockout clones, es-
pecially in early phases (Fig. 4 F and G), although there were no
obvious differences under steady-state conditions (Fig. 4G and
SI Appendix, Fig. S13 and S14). To validate the specificity of the
observed phenotypes, we performed rescue experiments
expressing full-length EPB41L5 in knockout clones. Here, we
observed that reexpression of EPB41L5 leads to an amelioration
of the spreading defect in EPB41L5 knockout cells (Fig. 4H and
SI Appendix, Fig. S13). Analysis of FA morphology under dy-
namic conditions revealed a major proportion of immature FAs
in EPB41L5 knockout clones compared with wild-type controls
(Fig. 4 I–K). Similar observations were also made in conditions
of acute FA disassembly and reassembly via application of the
myosin II inhibitor blebbistatin (24). Here, wild-type cells recovered
faster and more efficiently, reflected by an increased amount of
maturated FAs after washout of blebbistatin (SI Appendix, Fig.
S14). These findings highlight the critical role of EPB41L5 for FA
assembly and maturation. Because EPB41L5 appeared in a typical
FA localization pattern in vivo and in vitro (Figs. 2 and 3P), we
aimed to identify potential FA interaction partners of EPB41L5
via GST pull-down experiments. Here, we observed that the
C-terminal part of EPB41L5 (encompassing amino acids 385–
733; Fig. 4 L and M) interacted with PAXILLIN, whereas other
bona fide FA components such as INTEGRIN-beta1 showed an
interaction with neither the C-term nor the FERM-domain of
EPB41L5 (Fig. 4M and SI Appendix, Fig. S14). In agreement with
these data, localization studies demonstrated a clear colocaliza-
tion of the C-terminal part of EPB41L5 with PAXILLIN at
steady state and in spreading cells (Fig. 4 N–Q). Interestingly, a
pronounced accumulation at the leading edge of spreading cells
was observed for the C-terminal part of EPB41L5, together with
PAXILLIN accumulating in nascent FAs (Fig. 4Q and SI Appendix,
Fig. S14). In contrast, the FERM domain containing truncation
showed a distinct localization pattern at the lamellum of spreading
cells (Fig. 4P). These observations imply that the C-terminal part
of EPB41L5 is not only interacting with PAXILLIN but also
might be responsible for the localization toward the leading edge
during cellular spreading.

EPB41L5-Mediated Cell Spreading Depends on Actomyosin Contractility.
The process of cell spreading is being powered by contractile
processes involving the actomyosin cytoskeleton (25). We observed
that EPB41L5 predominantly accumulated at FA initiation sites,
and also to the leading edge of cells in very early spreading phases
(Fig. 5A). In addition, spreading EPB41L5 KO cells exhibited a
misconfigured cellular morphology characterized by the appearance
of multiple pseudopods (Fig. 5 B–D and SI Appendix, Fig. S15),
suggesting an impaired actomyosin regulation. We therefore hy-
pothesized an active role for EPB41L5 in regulating the actomyosin
machinery. In agreement with this hypothesis, preincubation of
wild-type cells with inhibitors of actomyosin contractility phenocopied
spreading and morphological defects of EPB41L5 KO cells (Fig. 5
E–I and SI Appendix, Fig. S15). The specificity of the pseudopod

phenotype could be confirmed by rescue experiments, where re-
expression of full-length EPB41L5 resulted in a significant re-
duction of pseudopod formation in respective knockout cells
during spreading (Fig. 5J). Life imaging microscopy revealed that
pseudopods are actively generated structures, characterized by
a rather unorganized actin cytoskeleton and only small FAs (Fig. 5
K–N and SI Appendix, Fig. S15 and Movies S1–S5). In line with
these observations, loss of EPB41L5 resulted in decreased levels
of p-MLC specifically at the leading edge of spreading cells (Fig. 5
O–Q), accompanied by altered localization of MYOSIN-II (SI
Appendix, Fig. S16). These findings were furthermore corroborated
byWestern blot experiments of either spreading or steady-state cells
(Fig. 5 R andW). Again, reexpression of full-length EPB41L5 could
reverse the reduced levels of p-MLC at the leading edge in
EPB41L5 knockout cells (Fig. 5S and SI Appendix, Fig. S16). Be-
cause the activation mode of the actomyosin cytoskeleton is mainly
regulated by of GTPases such as RhoA or Rac1 (26), we quantified
for active levels of those. RhoA and Rac1 are either inactive (GDP-
bound state) or active (GTP-bound state). Interestingly, we ob-
served that EPB41L5 knockout cells exhibited lower levels of active
RhoA during spreading, whereas at the same time, increased levels
of active Rac1 were detected (Fig. 5 T and U and SI Appendix, Fig.
S16). These findings indicate that loss of EPB41L5 results in a
reciprocal activation of the GTPases RhoA and Rac1, finally
leading to decreased actomyosin contractility. Remarkably, we
also observed a pronounced accumulation of Rac1 in pseudopods
of EPB41L5 knockout cells, potentially implying that Rac1 activation
might account for this phenotype (Fig. 5V). Furthermore, EPB41L5
knockout cells exhibited a much higher sensitivity toward myosin
inhibition, characterized by altered cellular morphology (SI Ap-
pendix, Fig. S16). Together, these data indicated a clear correlation
among the loss of EPB41L5, impaired actomyosin function, and
defective cell spreading.

EPB41L5 Regulates Actomyosin Contractility via ARHGEF18. To un-
derstand the potential mechanisms of EPB41L5 in regulating the
actomyosin machinery, we reanalyzed our initial in vivo iTRAQ
proteomics approach and screened for podocyte-enriched GEFs
as potential direct regulators of actomyosin contractility. Using
this targeted approach, we identified the RhoGEF ARHGEF18,
similar to EPB41L5, as a highly and specifically enriched podo-
cyte candidate protein (Fig. 6 A and F). Previously, ARHGEF18
has been implicated in cell shape modulation by regulating my-
osin activity (27). To further characterize a potential interaction
of both proteins, we performed coimmunoprecipitation assays
and could demonstrate that ARHGEF18 precipitated EPB41L5
(Fig. 6B). Moreover, endogenous pull-down experiments using a
specific antibody for ARHGEF18 revealed efficient precipita-
tion of EPB41L5 in immortalized human podocytes (Fig. 6C). To
better characterize this association, a set of complementary
truncations for EPB41L5 was generated. Here, only the FERM
domain containing truncations showed an efficient association
with ARHGEF18 (Fig. 6D and SI Appendix, Fig. S17). These
findings were corroborated by the use of GST-tagged recombi-
nant protein versions for the FERM-/FERM-FA, full-length as
well as C-terminal part of EPB41L5 in endogenous pull-down
assays (Fig. 6E and SI Appendix, Fig. S17). In line with our
iTRAQ proteomics data set, ARHGEF18 was strongly detected
in podocytes in vivo, with a rather prominent perinuclear, as well
as distinct basal, localization pattern (Fig. 6F and SI Appendix,
Fig. S18). Similar to EPB41L5, ARHGEF18 was highly enriched
at the leading edge of spreading podocytes (Fig. 6G). In agree-
ment with the decreased p-MLC level (Fig. 5 O–Q), ARHGEF18
localization was reduced at the leading edge (Fig. 6 H and I)
of EPB41L5KO cells. These data collectively indicated that EPB41L5
might be required to recruit ARHGEF18 to the leading edge as a
prerequisite for actomyosin activation. To further corroborate the
function of ARHGEF18 in podocytes, we used siRNA to generate
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knockdown of ARHGEF18. Remarkably, loss of ARHGEF18
phenocopied the spreading defects of EPB41L5 knockout cells
and was accompanied by decreased levels of p-MLC (Fig. 6 J–O
and SI Appendix, Fig. S18).

ECM Influences EPB41L5 Mediated Phenotypes. From hereditary
collagenopathies, it is evidenced that podocytes rely on collagen
type IV interactions to maintain their mechanical stress re-
sistance and filter function (28, 29). Therefore, we speculated
that the EPB41L5-mediated regulatory networks stabilizing cell
function, cell adhesion, and contractility might be specifically
influenced by the ECM composition. In fact, observed pheno-
types resulting from loss of EPB41L5 were influenced by pro-
vided ECM ligands and respective concentrations. Wild-type
cells showed a dose-dependent increase in cell size during
spreading on either collagen IV or fibronectin. Although the
spreading defects of EPB41L5 KO cells persisted on all collagen
IV concentrations, high concentrations of fibronectin could
ameliorate the spreading defect of EPB41L5 KO cells and pre-
vented the hypersensitivity toward myosin II inhibitors (Fig. 7 A–C
and E–J and SI Appendix, Fig. S19), suggesting that EPB41L5, in
addition to its general effect on FA maturation, is particularly
required for the execution of collagen IV-mediated outside-in
signaling. In agreement, quantification of active RhoA for cells
spreading on fibronectin revealed almost equalized levels of
EPB41L5 KO cells compared with wild-type cells, in contrast to
persistently diminished RhoA activation on collagen IV (Figs.
7D and 5T). To elucidate this phenomenon, we performed
quantitative SILAC (stable isotope labeling with amino acids in

cell culture)-based focal adhesome proteomics (30), in which
enriched and chemically cross-linked FA complexes are analyzed
using mass spectrometry (30). Strikingly, we detected that loss of
EPB41L5 modulated the composition of the focal adhesome, most
prominently on the level integrin receptors such as INTEGRIN-
beta1 (Fig. 7 K and L and Dataset S2). Although not primarily
detected in the MS data set (most probably because of sensitivity
issues), we could reveal that the collagen-binding INTEGRIN-
alpha2 also concordantly exhibited lower levels in the focal
adhesome fraction of EPB41L5-depleted cells (Fig. 7L). Thus,
EPB41L5 appears to be required for efficient collagen IV-
mediated outside-in signaling in podocytes.

Discussion
Modulation and regulation of adhesion represents a fundamen-
tal mechanism in epithelial cell biology (9). Interaction of epi-
thelial cells with the surrounding ECM or the underlying
basement membrane is mediated by different adhesion receptors
such as integrin adhesion complexes (9, 31). In this study, we
focused on the adhesome of podocytes. The medical relevance of
podocyte adhesion is underlined by the fact that podocyte de-
tachment is a key factor for chronic kidney disease progression
(32–34). Previous studies mainly focused on key components of
the integrin adhesome, such as different integrin subunits or
central signaling proteins such as ILK and TALIN (11, 12, 15).
Despite those previous advances, there is still only limited
knowledge about cell type-specific modulation of cell adhesion
and contractility. To identify potential podocyte-inherent adhe-
some modulators, we performed an in vivo screening approach

Fig. 4. EPB41L5 controls FA maturation and cellular
spreading. (A) Schematic depicting the generation
strategy of EPB41L5 knockout using Crispr/CAS9 ge-
nome editing. (B) Exemplary Sanger sequencing re-
sults illustrating two different mutations in one
podocyte clone. Western blot confirmed the absence
of EPB41L5. (C) Single-cell migration analysis dem-
onstrated a decreased migratory speed in EPB41L5
knockout clones (n = 86 cells over three independent
experiments; Dataset S3). (D and E) Decreased ad-
hesion of EPB41L5 knockout cells (n = 3; Dataset S3).
(F and G) Impaired cell spreading of knockout cells
compared with wild-type controls (n = 3; Dataset S3).
(H) Reexpression of full-length EPB41L5 ameliorated
the spreading defect in EPB41L5 knockout cells (at
least 70 cells were analyzed over three independent
experiments; Dataset S3). (I–K) Quantification of FA
subtypes in EPB41L5 knockout cells demonstrated
more immature FAs (>400 cells analyzed; Dataset
S3). (L) Schematic depicting the domain structure of
EPB41L5. (M) GST-pull-down experiments revealed
that only the C-terminal part of EPB41L5 is re-
quired for association with the FA molecule PAXILLIN.
(N–Q) Expression of GFP-tagged versions of C-terminal
or FERM-domain truncations highlighted the FA lo-
calization pattern for the C-terminal part (Q3-4; white
arrows indicate colocalization with PAXILLIN). FACS,
fluorescence-activated cell sorting.
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and identified the FERM domain protein EPB41L5 as a highly
selectively expressed FA component of podocytes (Figs. 1 and 2).
The importance of EPB41L5 for podocyte function was fur-
thermore supported by the profound phenotype of conditional
knockout mice and striking down-regulation in a series of human
glomerular disease conditions, as well as experimental mouse
and cell models (Fig. 3 and SI Appendix, Figs. S5, S6, and S20).
More recently, it was demonstrated that loss of TALIN (genetic
deletion and experimental stress models), a well-established core
focal adhesome component, results in a dramatic podocyte phe-
notype characterized by massive proteinuria, as well as consecutive
development of glomerular sclerosis (15). Interestingly, TALIN-
deficient podocytes exhibited a mild adhesion and spreading de-
fect, but a predominant misconfiguration of the actin cytoskeleton.
In contrast, EPB41L5 mainly influenced dynamic cellular functions
such as spreading and adhesion via titration of the actomyosin
machinery (Figs. 4 and 5).
The EPB4.1 protein family is involved in cellular morpho-

genesis, and EPB41L5 was particularly investigated in terms of
apicobasal polarity establishment via interaction with CRUMBS
in early development (35, 36). Previous work demonstrated that
EPB41L5 was required during early embryo gastrulation, which
seemed to be partially a result of EPB41L5-dependent FA
modulation and cell–cell contact establishment via cadherins
(37). On the basis of our observations, we here propose that
EPB41L5 mainly influences the maturational phase of FAs,
implicating that decreased tension or traction might attribute for
the detachment of podocytes, as evidenced in the EPB41L5
knockout model (Figs. 3 and 4). The actomyosin cytoskeleton is
involved in multiple cellular functions ranging from migration, to
cellular morphogenesis, to adhesion (38). Although ARHGEF18
was previously implicated in controlling cell migration, our data
now indicate that the RhoGEF ARHGEF18 acts downstream of
EPB41L5-regulated cellular spreading in the cell-specific context

of podocytes (Fig. 6) (39). In agreement with the known role of
ARHGEF18 as a RHOGEF activator for RhoA, we observed
decreased levels of active RhoA and concomitantly increased
activation of Rac1 in EPB41L5 knockout cells during spreading
(Fig. 5). Although hyperactivation of Rac1 is an accepted path-
ogenetic model in podocyte disease verified by several inde-
pendent studies (40, 41), there is an ambiguous perception
regarding the role of RhoA. Nevertheless, an emerging body of
evidence supports the concept of a required balance of these
GTPases to maintain cellular function (42). Therefore, our
findings exemplify the interdependent and reciprocal interplay of
small GTPases and demonstrate their essential role for podocyte
spreading and adhesion maturation (Fig. 6).
The disturbed activity of the actomyosin cytoskeleton also

contributes to the prominent feature of active pseudopod for-
mation in EPB41L5 knockout cells during spreading (Fig. 5 and
Movies S1–S5). Pseudopods represent a specialized cellular
protrusion type mainly observed in chemotactic cell types, and
Rac1 activation has been shown to be involved in the initiation
and propagation of pseudopod formation (43). In light of this,
the pseudopod phenotype of EPB41L5 knockout cells might
reflect the disturbed balance of GTPase activation and insuffi-
cient FA maturation, ultimately culminating in the generation
of numerous unstable cellular projections. A very recent study
could demonstrate that stabilization of the actin cytoskeleton
via application of a small molecule affecting the DYNAMIN
structure resulted in prevention of progressive proteinuria in a
series of genetic and toxic podocyte stress models. These ob-
servations underlined the importance of the actin cytoskeleton as
a common final pathway of podocyte injury (44, 45). Our data
now extend these observations and identify with EPB41L5, a
podocyte-specific upstream link from the adhesion machinery to
the regulation of the cytoskeleton. As FAs are known to transmit
outside-in-signals, this also raised the possibility of potential sensing

Fig. 5. EPB41L5-mediated cell spreading depends
on actomyosin contractility. (A) During initial phases
of spreading, EPB41L5 colocalized with PAXILLIN
at nascent adhesion initiation sites. (B–D) Loss of
EPB41L5 resulted in the formation of pseudopodial
protrusions (>100 cells over three experiments,
30 min spreading; Dataset S3). (E–I) Treatment of
wild-type cells with blebbistatin or Y27632 pro-
moted the formation of pseudopods (at least n =
50 cells over three experiments, 45 min spreading;
Dataset S3). (J) Reexpression of full-length EPB41L5
ameliorated the pseudopod phenotype in EPB41L5
knockout (>100 cells over three experiments; 30 min
spreading; Dataset S3). (K and L) Life imaging of
EPB41L5 knockout cells revealed pseudopod forma-
tion as an active process (Dataset S3). (M and N) FA
morphology is shifted toward smaller adhesion sites
in pseudopod protrusions (12 WT and 23 KO cells
were analyzed; Dataset S3). (O–Q) Analysis for P-MLC
showed decreased levels at the leading edge of
spreading EPB41L5 KO cells (n = 10 over two exper-
iments; Dataset S3). (R) Western blot on spreading
wild-type and EPB41L5 KO cells showed decreased
levels of P-MLC as well as P-MYPT. (S) Reexpression
of full-length EPB41L5 restores p-MLC levels at the
leading. (T and U) Quantification of active GTPase
levels during cell spreading showed decreased ac-
tive RhoA and increased active Rac1 levels in
knockout cells (n = 3; Dataset S3). (V) RAC1 and
RHOA immunofluorescence in knockout pseudo-
pods. (W ) Western blot on steady state EPB41L5 KO
cells showed decreased levels of P-MLC, as well
as P-MYPT.
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properties of the EPB41L5 FA-associated complex. Interestingly,
we detected an EPB41L5-dependent alteration of the focal adhe-
some composition (Fig. 7 and Dataset S2). Altogether, these
changes might serve as a possible explanation for differential
ECM response properties because of the loss of EPB41L5 (Fig.
7). In fact, our findings suggest the physiological GBM com-
position influences the EPB41L5 associated signaling response
(Fig. 7), suggesting collagenopathies such as Alport syndrome
specifically contribute to changes in podocyte adhesion signal-
ing, finally leading to podocyte loss and progressive kidney
disease (29).
Collectively, we describe here comprehensive adhesome

mapping of podocytes in vivo as a unique model to study the
requirements of FAs under enormous physical forces. On the basis
of the identification of EPB41L5, we describe a cell-inherent concept
of FA maturational control via integration of the actomyosin
cytoskeleton and context-dependent ECM sensing, which is re-

quired to maintain the integrity of the kidney filtration barrier
(Fig. 7).

Materials and Methods
Please refer to SI Appendix for complete details of materials and methods, as
well as all supplemental figures.

Animals. EPB41L5 knockout mice were generated as described in SI Appendix,
Materials and Methods. All animal experiments were approved by local author-
ities (Regierungspräsidium Freiburg, Freiburg 79106 – approval number G10/39).

MS Analysis. Detailed description of isolation and analysis is described in SI
Appendix, Materials and Methods. All analyzed data are provided as Datasets
S1 and S2.

Super Resolution Microscopy. Super resolution microscopy was performed in
principle, as previously described (22). Further details are provided in the SI
Appendix, Materials and Methods.

Fig. 6. EPB41L5 regulates actomyosin contractility via ARHGEF18. (A) Subanalysis of the in vivo iTRAQ proteomics dataset for DH domain containing small GTPases.
ARHGEF18 showed a high enrichment score, as well as involvement in cell shape regulation. (B) Coimmunoprecipitation between epitope-tagged EPB41L5 and
ARHGEF18. (C) Endogenous EPB41L5 was precipitated via pull-down with an antibody directed against ARHGEF18, IgG was included as a control. (D) A series of
different EPB41L5 truncations (all epitope tagged) were used tomap the association with ARHEF18; here only the FERM domain containing truncations precipitated
ARHGEF18. (E) GST-tagged recombinant protein versions of either FERM domain or C-terminal truncations of EPB41L5 were used in endogenous pull-down ex-
periments. Only the FERM domain containing truncation precipitated ARHGEF18. (F) Immunofluorescence staining for ARHGEF18 on murine adult glomeruli
revealed colocalization with the podocyte marker NEPHRIN (boxed regions indicate zoomed-in detail). (G–I) Immunofluorescence staining for ARHGEF18 on cells,
while spreading revealed localization toward the leading edge. Quantification of immunofluorescence intensities across the cell border indicated decreased levels
ARHGEF18 in KO cells (at least 20 cells per genotype were analyzed over two independent experiments). (J–L) siRNA-mediated knockdown of ARHGEF18 in im-
mortalized human podocytes, as confirmed via immunofluorescence andWestern blot. (M–O) Knockdown of ARHGEF18 resulted in significant impairment of early
spreading on collagen IV surfaces (at least 100 cells per condition were analyzed and averaged over three independent experiments; Dataset S3).
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CAS9-Mediated Knockout in Immortalized Human Podocytes. Detailed de-
scription of gRNA design, transfection, and isolation of respective clones is
provided in the SI Appendix, Materials and Methods.

Statistics and Reproducibility. Data are expressed as mean ± SEM, if not stated
otherwise. Based on data distribution (normal vs. nonnormal distribution),
paired Student´s t test, one-way ANOVA (multiple comparison test, Tukey),
or nonparametric two-tailed Mann-Whitney tests were performed. Experi-
ments were not randomized or blinded. Statistical significance was defined
as *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001; NS, not signif-

icant. Number of independent experiments and total amount of analyzed
cells are stated either in the figure legends or listed in Dataset S3.
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Fig. 7. ECM influences EPB41L5-mediated phenotypes. (A) Cell morphology assessed as major–minor axis quantification revealed altered morphological
appearance of EPB41L5 KO cells on collagen compared with fibronectin conditions (at least 145 cells were analyzed, averaged more than three independent
experiments; Dataset S3). (B, C, D–J) EPB41L5 KO clones show defective ECM sensing on collagen IV coated substratum. In contrast, increasing concentrations
of the ECM ligand fibronectin led to improved spreading in respective KO clones (at least 100 cells per genotype and condition were analyzed, averaged over
three independent experiments; Dataset S3). (K) Map of SILAC-based quantitative EPB41L5 dependent focal adhesome. (L) Western blot confirmation of focal
adhesome fraction revealing balanced levels for PAXILLIN, whereas ITGB1, ITGA2, and also ARHGEF18 showed decreased intensity compared with the wild-
type. (M) Schematic summarizing the phenotypic features of the EPB41L5 knockout characterized by foot process effacement and pronounced podocyte
detachment. (N) EPB41L5 modulates actomyosin contractility via direct recruitment of the small GTPase ARHGEF18, and thereby influences FA maturation.
This process is influenced via ECM composition and potential regulatory roles mediated by collagen receptors. Coll, collagen IV; ECM, extracellular matrix; FA,
focal adhesion; FN, fibronectin, NM-II, nonmuscle myosin 2; SD, slit diaphragm; SILAC, stable isotope labeling by amino acids in cell culture.
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Movie S1. Spreading of EPB41L5 KO cells using differential interference contrast life microscopy.
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Movie S2. Spreading of wild-type cells using differential interference contrast life microscopy.
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Movie S3. Life-imaging of EPB41L5 knockout cells employing Lifeact-RFP.

Movie S3

Movie S4. Life-imaging of wild-type cells employing Lifeact-RFP.
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Movie S5. Life-imaging of EPB41L5 knockout cells employing Utrophin-RFP.
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Extendend Materials and Methods 

 

Animals 

A BAC clone, RP23-443K20, that contains the translational start site of the Epb41l5 

gene was obtained from BACPAC Resources (http://bacpac.chori.org/), and targeting 

and control vectors were constructed as described. Following primers were used: the 

32 bp p1 (5’-CAGAAAGTCGACGCTAGATCCCCTCGCCTACC-3’) and 23bp p2 (5’-

GGTGTGGGGTCTGGGAATGAAGG-3’) to amplify the 2.5kb 5’ arm of the targeting 

vector, the 19bp p3 (5’-GGTCAAACAGCTCCTGTCC-3’) and 36bp p4 (5’-

GACTGGCTCGAGGGTAGGGTTGAGAGGGATTAGTAG-3’)  

sequences to amplify the 1.1kb 3’ arm of the targeting vector. Their locations are 

indicated in Figure S7. The six underlined nucleotides in p1 and p4 sequences were 

converted into Accl and Xhol recognition sequences, GTCGAC and CTCGAG, 

respectively, to generate each primers. The amplified products were digested by 

each restriction enzyme: Accl and Xhol for the 2.5 kb 5’ arm and Spel and Notl for the 

1.1kb 3’ arm, respectively. To construct the targeting vector, the 5’ 2.5kb and 3’ 1.1kb 

arms were inserted into the Accl/Notl sites and Nhel/Xhol sites of 5’ and 3’ cloning 

sites, respectively, of the LacZ/Neo-DTA vector. To generate podocyte specific 

knockout mice the well established hNPHS2-Cre allele was intercrossed to Epb41l5 

conditional mice (provided by Lawrence Holzman - Renal, Electrolyte and 

Hypertension Division, University of Pennsylvania School of Medicine Philadelphia, 

PA, USA). As an inducible podocyte specific mouse line we made use of a mouse 

line expressing a rtTA cassette under control of the hNPHS2 promotor (1). Induction 

of the respective inducible mouse models was performed according to following 

protocol: animals at the age of 4 weeks received doxycycline hydrochloride (Fagron) 

via the drinking water (2mg/ml with 5% (wt/vol) sucrose, protected from light) for a 

periode of 14 days. For isolation of primary podocytes conditional Epb41l5 knockout 

animals were crossed to Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (purchased from 

JAX mice). Mice were maintained on a SV129 background. All mouse experiments 

were performed according to the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals, as well as the German law governing the welfare of 

http://bacpac.chori.org/


animals. All studies were approved by the Regierungspräsidium Freiburg (G-10/39), 

Germany. 

 
Urine analyses 

Urine was collected at indicated time points and urinary albumin and creatinine were 

measured using Microflural™ Microalbumin Test (Progen, Heidelberg, Germany) and 

an Creatinine Kit (Labor+Technik, LT-Sys, Berlin, Germany) according to the 

manufacturer´s protocol. Proteinuria was expressed as albumin to creatinine ratio 

(ACR ratio: albumin mg to creatinine mg). 

 

In situ hybridization 

Whole mRNA extracts from P1 mouse kidneys served as template for RT-PCR and 

subsequent cloning of fragments of the coding sequence and 3′-untranslated region. 

For generating insitu probes against mEpb41l5 the following primers were used:  

mEpb41l Transcript variant 1+2(fp): 5´- AGT TCA GGT TTG TGC CCA TC -3´ 

mEpb41l Transcript variant 1+2(rp): 5´ - CGG GAT CCT AGT CGA ATG AA -3´ 

PCR products were cloned into pBluescript II KS (-), linearized and transcribed with 

T3 and T7 RNA polymerases (Promega, Mannheim, Germany) to generate sense 

and antisense digoxigenin-labeled probes (digoxigenin RNA labeling mix; Roche 

Applied Science, Mannheim, Germany). Kidneys at postnatal day 2 were fixed 

overnight at 4 °C in 4% paraformaldehyde, embedded in paraffin, and sectioned at 8 

μm. For mRNA detection, slides were treated with proteinase K, refixed with 4% 

paraformaldehyde, acetylated by using acetic anhydride (0,25% acetic anhydride in 

0,1M triethanolamine (T-1377; Sigma, Schnelldorf, Germany) and hybridized at 68 °C 

in hybridization buffer (50% formamide, 5× SSC, yeast RNA (50g/ml), 1% SDS, 

heparin (50g/ml), 0,1% probe). Stringency washes were performed with wash I (50% 

formamide, 5× SSC (pH4,5), 1%SDS) and wash II (50% formamide, 2× SSC). For 

detection, slides were incubated with alkaline phosphatase-conjugated anti-

digoxigenin antibody 1:3000 at 4 °C overnight followed by BM purple staining (Roche 

Applied Science, Mannheim, Germany). Digital photographs were captured on an 

Axioplan2 microscope (Zeiss, Oberkochen, Germany). 

 

SEM and TEM procedures 

For scanning electron microscopy kidney samples were fixed in glutaraldehyde and  

dehydrated by graded ethanol series (70% ethanol, 80% ethanol, 90% ethanol and 



100% ethanol), followed by incubation in 50:50 ethanol/Hexamethyldisilazane 

(Sigma, Schnelldorf, Germany). After incubation in 100% HMDS the solvent was 

allowed to evaporate. Samples were coated with Gold (Zeiss Semco Nanolab7, 

Polaron Cool Sputter Coater E 5100, Balzer Cpd 020) and imaged using a Leo 1450 

VP scanning electron microscope. Samples for immunogold electron microscopy 

were fixed and subsequently embedded in Lowicryl K4M resin (Electron Microscopy 

Sciences). Ultrathin sections were cut and stained by indirect immunogold protocol 

as described before (for antibodies see supporting information antibodies list )(2). 

 

Immunofluorescence staining of kidney sections 

Kidneys were frozen in OCT compound medium immediately after dissection. 4µm 

sections were cut on a Leica Cryotome. Sections were subsequently fixed in 4% 

paraformaldehyde, blocked in PBS with 5% BSA and incubated with primary 

antibodies for 1h or overnight.  Sections were washed for several times, then 

fluorophore-conjugated secondary antibodies (dilution 1:500 - Invitrogen, Karlsruhe, 

Germany) were applied and incubated for 45 minutes. Human kidney biopsy samples 

underwent an antigen retrieval step (pH citrate 6.0), and were subsequently 

processed as outlined above. Imaging was performed either on a Zeiss Axioscope 

40FL microscope, equipped with an Axiocam MRc5 digital video camera and 

conventional HBO lamp (Carl Zeiss, Oberkochen, Germany) or on a LSM510 

confocal microscope (Zeiss). Use of human kidney biopsy material was approved by 

the Scientific-Ethical Committee of the University Medical Center of Freiburg. Control 

kidney samples were from unaffected areas of tumor nephrectomies. Imaging was 

performed on a Zeiss Axioscope 40FL microscope, equipped with an Axiocam MRc5 

digital video camera and conventional HBO lamp (Carl Zeiss, Oberkochen, 

Germany). 

 

mRNA expression analysis of human kidney disease entities (NEPHROSEQ) 

For analysis of differential mRNA expression levels in human glomerular disease 

entities the opensource database NEPHROSEQ was used (www.nephroseq.org). For 

detailed patient information and statistical data see dataset S3. 

 

Antibodies 

All antibodies used in this study are collectively described in the SI Materials and 

Methods (at the end of the SI appendix). 

http://www.nephroseq.org/


 

STORM – super resolution microscopy 

Briefly, primary antibody diluted in 3% BSA-PBS was applied on the sections and 

incubated overnight at 4°C. The next day, sections were washed for 30 minutes with 

PBS at room temperature and then incubated with the STORM-specific secondary 

antibodies diluted in 3% BSA-PBS at room temperature for 2 hours. STORM image 

acquisition was performed using a custom-made setup as described (22). 

Approximately 10,000 images per channel were captured and analyzed using custom 

software. Further details are provided in the supplemental section. After washing the 

samples for 30 minutes with PBS at room temperature, immunolabeled sections were 

postfixed using 3% PFA and 0.1% glutaraldehyde (Electron Microscopy Sciences) in 

PBS and prepared for STORM imaging. The secondary antibodies were custom 

conjugated to Alexa647 reporter dye and either Alexa405 or Cy3 activator dyes. 

Coverglass with the sections on it was inverted onto a slide containing a drop of 

imaging buffer containing mercaptoethylamine along with an oxygen scavenger 

system, and coverglass edges were sealed with nail polish.  

 

MS-procedures: Cell lysis and carbamidomethylation 

Approximately 1.3 to 2.7 million GFP+ (podocytes) and RFP+ (non-podocytes) cells 

per individual preparation were used. Each preparation consisted of 4 individual 

animals, which were pooled after cell sorting. The whole analysis was performed with 

4 individual and independent preparations. Snap frozen cell pellets were lysed in 50 

mM Tris-HCl, pH 7.8 buffer containing 150 mM NaCl, 1% SDS and complete mini 

EDTA-free (Roche Diagnostics). Subsequently, 1 µL of benzonase (25 U/µL) and 2 

mM MgCl2 were added to the lysates and incubated at 37°C for 30 min. Samples 

were centrifuged at 4°C and 18,000 g for 30 min. Protein concentration of the 

supernatant was determined by BCA assay according to the manufacturer’s protocol 

(Pierce, Thermo Scientific). Cysteines were reduced with 10 mM dithiothreitol at 56°C 

for 30 min followed by alkylation of free thiol groups with 30 mM iodoacetamide at 

room temperature (RT) in the dark for 30 min.  

 

MS-procedures: Sample preparation and proteolysis 

Samples for LC-MS analysis were prepared using filter aided sample preparation 

(FASP) (3, 4) with minor changes. Cell lysates corresponding to 50 µg of protein 



were diluted with freshly prepared 8 M urea/100 mM Tris-HCl, pH 8.5 buffer (5). 

Diluted samples were placed on the Microcon centrifugal devices (30 KDa cutoff) and 

were centrifuged at 13,500 g at RT for 25 min. All the following centrifugation steps 

were performed under similar conditions i.e. 13,500 g, RT, 15 min. To eliminate 

residual SDS, three washing steps were carried out using 100 µL of 8 M urea/100 

mM Tris-HCl, pH 8.5 buffer and finally for the buffer exchange, the devices were 

washed thrice with 100 µL of 50 mM triethylammonium bicarbonate (TEAB) buffer, 

pH 8.5. To the concentrated proteins, 100 µL of proteolysis buffer comprising 

sequencing grade modified trypsin (Promega) 1:25 w/w (enzyme to protein), 0.2 M 

GuHCl, 2 mM CaCl2 in 50 mM TEAB buffer, pH 8.5 were added and incubated at 

37°C for 14 h. The generated tryptic peptides were recovered by centrifugation with 

50 µL of 50 mM TEAB buffer, pH 8.5 followed by 50 µL of ultra-pure water. Finally, 

the peptides were acidified (pH < 3.0) with trifluoroacetic acid (TFA) and the digests 

were quality controlled as described previously (6). Acidified peptides were 

completely dried under vacuum (SpeedVac), resolubilized in 0.5 M TEAB (pH 8.5) 

and the peptide concentration was determined using a NanoDrop 2000 UV-Vis 

spectrophotometer (Thermo Scientific). , 

 

MS-procedures: iTRAQ 8-plex labeling and reversed phase fractionation at pH 

6.0 

Prior to labeling with iTRAQ reagents, each sample (~ 0.5 µg) was analyzed on a LC-

MS system. The sample amounts were corrected based on the comparison of total 

ion chromatograms (TICs) to compensate for the systematic errors such that each 

sample had identical starting material before labeling. After adjustment, 25 µg of 

tryptic peptides of each sample were labeled with iTRAQ 8-plex reagents (AB Sciex) 

according to the manufacturer’s instructions. After incubation, the samples were 

pooled and the reaction was quenched by adding 100 µL of ultra-pure water. The 

multiplexed sample was concentrated to ~20 µL under vacuum and subsequently 

acidified with TFA (1% final concentration). Sample cleanup was done with a C18 

SPE cartridge (15 mg, Varian) using a vacuum manifold system and the eluted 

peptides were dried in a SpeedVac. The dried multiplexed sample was resolubilized 

in buffer A (10 mM ammonium acetate, 0.4 mM formic acid (FA), pH 6.0) and 50 µg 

were fractionated by reversed phase chromatography at pH 6.0 on an Zorbax 300SB-

C18 column, 1 x 150 mm, 5 µm particle size column (Agilent) using an UltiMate 3000 



HPLC (Thermo Scientific) using a binary buffer system; buffer A: 10 mM ammonium 

acetate, 0.4 mM FA, pH 6.0 and buffer B:  84% acetonitrile (ACN) in 10 mM 

ammonium acetate, 0.4 mM FA, pH 6.0. Peptides were loaded onto the column with 

buffer A at a flowrate of 12.5 µL/min and separation was carried out using the 

following gradient: 0-3% B in 10 min, 3-50% B in 65 min, 50-60% B in 5 min, 60-95% 

B in 5 min, 95% B hold for 5 min, 95%-3% B in 5 min and finally re-equilibrate the 

column with 3% B for 20 min. In total, 24 fractions were collected at 30 sec intervals 

from min 15 to 70 in a concatenation mode.   

 

LC-MS/MS analysis  

Each fraction was resolubilized in 45 µL of 0.1% TFA and 1/3rd of each sample was 

analyzed by nano-LC-MS/MS using an Ultimate 3000 nano RSLC system coupled to 

a Q Exactive mass spectrometer (both Thermo Scientific). Peptides were 

preconcentrated on a 75 µm x 2 cm C18 trapping column for 10 min using 0.1% TFA 

with a flow rate of 20 µL/min followed by separation on a 75 µm x 50 cm C18 main 

column (both Pepmap, Thermo Scientific) with a 127 min LC gradient ranging from 3-

42% of B (84% ACN in 0.1% FA) at a flow rate of 250 nL/min. The Q Exactive was 

operated in data-dependent acquisition mode and MS survey scans were acquired 

from m/z 300 to 1,500 at a resolution of 70,000 using the polysiloxane ion at m/z 

371.101236 as lock mass (7). Precursor isolation window was set as 2.0 m/z and the 

fifteen (Top15) most intense signals were subjected to higher energy collision 

dissociation (HCD) with a normalized collision energy of 35% at a resolution of 

17,500 taking into account a dynamic exclusion of 12 s. Automated gain control 

(AGC) target values and fill times were set to 3x106 and 120 ms for MS and 1x106 

and 250 ms for MS/MS, respectively with an underfill ratio of 10%. For charge state 

reduction, a 10% (v/v) NH4OH solution was placed at the nano-ESI source as 

previously described (8).  

 

Protein enrichment and functional annotation analysis 

Detected proteins (iTRAQ podocyte proteome) were identified as 

enriched/upregulated with a “log2 ratio podocytes/non-podocytes” >0.5 or as non-

upregulated with a log2 ratio <0.5. Gene ontology term (GO-Term) annotation was 

implemented using the UniProt and MGI database (9, 10). The GO-Term: 

“GO:0005925 focal adhesion” (MGI database) was used to generate a list of 



podocyte enriched focal adhesion proteins. These focal adhesion proteins were 

assembled to functional groups as previously described by Kuo JC et al. (11). To 

generate a network out of these proteins, the list of focal adhesion proteins found as 

enriched was imported into Cytoscape (version 3.2.1) (12). Protein-protein 

interactions were added by merging this network with a human interactome from the 

BioGRID (release 3.2.105) database (13). Protein and interaction duplications were 

removed. In order to generate an unbiased list of potential podocyte specific focal 

adhesion proteins, a merged focal adhesion proteome from Horton ER et al. was 

merged with the list of proteins enriched in podoyctes (14). This candidate list was 

subsequently filtered for protein domains enriched in focal adhesion proteins. This list 

of protein domains enriched in focal adhesion proteins was generated by analysis of 

the consensus integrin adhesome from Horton et al. (14) Go-Term and InterPro 

protein domain enrichment analysis was done using the FunRich (version 2.1.2) 

functional enrichment analysis software (15, 16). The mice proteome database from 

UniProt was chosen as a background database. For enriched Go-Terms 

hypergeometric uncorrected p-values are shown on the charts (Figure S2). Also 

Benjamini-Hochberg corrected FDR values led to significant p-values for these Go-

Terms. 

 

Isolation of focal adhesion complexes 

A technique for isolation of focal adhesion complexes was described previously (11, 

14). This technique was combined with a SILAC based quantitative MS approach 

(17). In brief, human immortalized podocytes were SILAC labeled under growth 

conditions at 33°C. After 14 days, podocytes were seeded to a 50µg/ml collagen IV 

coated 15cm cell culture dish and were cultured for 24 hours. For stabilization and 

linkage of focal adhesion complexes to the underlying ECM cells were incubated with 

two protein cross-linkers (DSP (3,3'-Dithiobis(sulfosuccinimidylpropionate); 100mM; 

Sigma-Aldrich) and DPPB (1,4-Bis[3-(2-pyridyldithio)propionamido]butane; 10mM; 

Sigma-Aldrich)) for 10 minutes. Cross-likers were removed by washing with PBS and 

quenched with 1M Tris-HCl (pH 7,5, 10 min). After additional washing in PBS, cell 

bodies were removed via cell lysis using RIPA buffer (25mM Tris-HCL, 150mM NaCl , 

1% Triton-X-100, 0,2% SDS +0,5% Sodium Deoxycholic acid, pH7,5, containing 

proteinase inhibitors) for 3 minutes at 4°C followed by application of hydrodynamic 

force using a waterpik (washing 2x10s with PBS). ECM linked focal adhesion 



complexes were now isolated by scraping in scraping buffer (100mM Tris-HCl 

(pH 7,6), 4% (w/v) SDS). Total protein concentrations were measured and samples 

were balanced. Laemmli buffer (with DTT) was added and focal adhesion complexes 

were denatured at 70°C for 10 min. MS analysis and Western blotting was performed 

subsequently. Data processing and annotation of external databases was performed 

as described above. A core focal adhesome was defined by merging the consensus 

integrin adhesome (14) with a literature curated adhesome(18). EPB41L5 dependent 

regulated components of this core adhesome were graphically shown in Figure 7. For 

further information see also dataset S2. 

 

Isolation of primary podocytes for in vitro experiments 

Kidneys were cut in small pieces and mixed in 3ml (per kidney pair) prewarmed 

digestion solution (digestion solution containing 1mg/ml Collagenase, 1mg/ml 

Proteinase, 50U/ml DNase in 1xHBSS). The solution was resuspended and 

incubated at 37°C for 7min. After incubation the solution was put on a cell strainer 

and it was rubbed through the cell strainer using the stamp of a 5ml syringe. The 

strainer was washed using ice cold 1xHBSS. The flow-through was filtered through a 

cell strainer and washed again with 1xHBSS. Glomeruli were washed from this cell 

strainer using 1xHBSS and collected. The obtained glomeruli were centrifuged at 

4°C, 2000g for 10min, the supernatant was removed and the glomeruli pellet was 

dissolved in primary podocyte medium (RPMI medium supplemented with 10% FBS, 

Penicillin/Streptomycin, ITS). Cell culture flask were coated using Collagen IV 

dissolved in acetic acid solution and finally the resuspended glomeruli were seeded 

and cultured at 37°C and 5% CO2.. Glomerular cells were grown out for 7 days and 

FACS sorted to obtain the GFP labeled podocyte fraction. 

 

Crispr/Cas9 mediated knockout of EPB41L5 

For the generation of EPB41L5 knockout in immortalized human podocytes 

(generous gift from Moin Saleem, Bristol, UK) the Crispr/CAS9 genome editing 

technology was applied. gRNAs targeting exon 1 of the human EPB41L5 gene were 

designed using a web-based platform (e-crisp.org - http://www.e-crisp.org/E-CRISP/) 

and further subcloned in targeting CRISPR nuclease vectors with an OFP reporter 

according to manufacturer´s instructions (guideRNA: 5’-

GACTTAGAATCTCCAGCTGC(AGG)-3’ - gene-art – Invitrogen, Karlsruhe, 

Germany). After initial validation in mixed cell-populations employing the nuclease 

http://www.e-crisp.org/E-CRISP/


surveyor technology (Integrated DNA technologies, Leuven, Belgium), immortalized 

human podocytes were electroporated with CAS9 nuclease and respective gRNAs. 

After 48 hours, OFP positive cells were selected via FACS and single cell clones 

were further grown to subsequent mutation analysis. DNA of respective single cell 

clones was isolated and further PCR amplified and homozygous mutated clones 

were preselected applying a restriction enzyme digest with PstI (5’-CTGCA/G-3’ New 

England BioLabs, Ipswich, MA, USA). These clones were subcloned and analyzed 

using Sanger Sequencing (primer pairs for amplification – E1 fw 5´-

TCTTGAACTCCTGGCTCTA-3´; E1 rev 5´-TTTGGAGCTCAGCAAGACCT-3´). Only 

clones with homozygous mutations resulting in premature stop-codons were selected 

for further analysis. Loss of protein was furthermore confirmed using western blot. 

 

Single cell migration assay 

Cells were seeded on ibidi μ-treat dishes (ibidi, Martinsried, Germany) and cultivated 

in standard medium (see above). Observation of single cell migration was performed 

using a Nikon Biosstation IM device (Nikon, Düsseldorf, Germany). Primary 

podocytes were identified by NPHS2Cre driven podocyte specific GFP expression 

and phase contrast observation was performed for 12 hours. In the case of 

immortalized podocytes imaging was only performed using phase contrast. Further 

analysis was done by using the ManualTracking and ChemoTaxis plugin for NIH 

ImageJ 1.46. 

 

Adhesion, cellular spreading assays and analysis of focal adhesion 

morphology 

Adhesion assays on collagen IV coated surfaces were performed as previously 

described (19). In brief, cells were trypsinized, counted with an automated cell 

counting tool (Biorad, Munich, Germany) and equal amounts of cells (40.000 cells per 

genotype and technical replicate) were seed for 15 minutes on 50µg/ml collagen IV 

precoated 96 well plates. After standardized washing procedures, crystal violet was 

applied and OD as a measure of adhered cells was quantified on a photometer 

(TECAN, Crailsheim, Germany). For cell spreading assays equal amounts of cells 

were seeded on pre-coated cover-slips or ibidi 8-well dishes (if not statet otherwise 

precoating was performed with 50µg/ml collagen IV or fibronectin respectively, for 

spreading under titrated ECM concentrations 0.5µg/ml, 10µg/ml and 50µg/ml were 

applied for either collagen IV or fibronectin; fibronectin from BD Biosciences and 



collagen IV from Sigma) for indicated time points. After brief fixation in PFA 4%, cells 

were stained with Phalloidin and imaged using an Axioscope 40FL microscope setup 

20x magnification. Randomly chosen images were captured and analyzed using 

ImageJ NIH. Following binarization of images individual cell areas were measured. 

Circularity analysis was also performed using implemented function of ImageJ NIH. 

For the quantification of focal adhesion fractions cells were seeded for 30 and 45 

minutes, fixed and stained. Individual cells were assessed for 3 criteria (a: only edge-

staining; b: nascent adhesions; c: maturated adhesions). Focal adhesion morphology 

was assessed by staining for the focal adhesion component PAXILLIN. Image 

acquisition was performed using a Zeiss Axioscope 40FL microscope, equipped with 

a 63x objective. Evaluation of focal adhesion size and distribution was performed with 

a custom written macro embedded in FIJI NIH ImageJ 1.46. For the quantification of 

cellular protrusions cells were seeded for 30 minutes at 20µg/ml collagen IV coated 

glass cover slips, fixed and stained. Protrusions of individual cells were counted and 

analyzed. To assess major:minor axis ratios individual cells were analyzed using NIH 

ImageJ 1.46. Analysis of fluorescence intensities across the cell border were 

performed using the line scan function of FIJI NIH ImageJ 1.46. At least 10 

representative cells per condition were measured and at least 3 biological replicates 

were analyzed. For treatment and washout experiments equal amounts of cells were 

seeded for 4 hours on collagen IV or fibronectin pre-coated glass cover-slips. Then 

treatment of cells using the myosin-II inhibitor blebbistatin (Sigma, Schnelldorf, 

Germany) and the ROCK inhibitor Y-27362 (Sigma) were performed as indicated in 

the individual experiments, for 40 minutes. Treatment of cells using doxorubicin and 

protramine sulfate (Sigma) were performed as indicated in the individual 

experiments. For spreading experiments under doxorubicin or protramine sulfate 

treatment, cells were pre-treated with 2µg/ml doxorubicin for 24 hours or 300µg/ml 

protamine sulfate for 10 minutes.  

 

Live cell imaging 

For analysis of pseudopod dynamics immortalized human podocytes were 

transfected with RFP-tagged versions of Lifeact via electroporation. After 24 hours 

cells were seeded on ibidi dishes (ibidi, Martinsried, Germany) and recorded on a 

Zeiss Cell Observer equipped with a LCI Plan-Neofluoar 63x/1.3 objective and Tokai 

Heat Incubator (controlled heating, controlled CO2 atmosphere). Respective imaging 



sequences were analyzed using Image J NIH Version 1.47. Protrusion rate 

generation was calculated by counting every newly generated protrusion in a 10 

minute time frame.  

 

siRNA knockdown in immortalized human podocytes 

Generation of siRNA mediated knockdown of ARHGEF18 in immortalized human 

podocytes was performed using previously published siRNA sequences (siRNA 

p114Rhogef I - 5′-UCAGGCGCUUGAAAGAUA-3′; p114Rhogef II - 5′-

GGACGCAACUCGGACCAAU-3′ (20)). Transfection was performed using Amaxa 

nucleofector technology (Lonza, Basel, Switzerland) according to manufacturer´s 

instructions. Efficiency of the knockdown was cofirmed 48 and 72 hours after 

transfection using western blot. Spreading experiments were performed and 

quantified as described above. 

 

Analysis of activated RhoA and Rac1 levels using G-LISA 

Cells were serum starved for 3 consecutive days at 1% FCS in standard RPMI1640 

medium. After completion of the starvation period, cells were trypsinized and equal 

amounts were seeded on either collagen IV or fibronectin coated 10 cm dishes for 

either 20 or 45 minutes. Dishes were washed with ice-cold PBS buffer twice and lysis 

was performed at 4°. Lysates were equalized due to protein content and analyzed 

according to the manufacturers instruction (RhoA G-LISA activation assay kit – 

BK124; Rac1,2,3 G-LISA activation assay kit – BK125, Cytoskeleton, USA). 

 

 

Immunoprecipitation and pulldown 

Co-immunoprecipitation was performed as described previously (21). Briefly, HEK 

293T cells were transiently transfected with 4µg DNA of the indicated constructs 

using the PEI (Polyethylenimin) method. After incubation for 24 h, the cells were 

lysed in 1% Triton X-100 lysis buffer (1% Triton X-100, 20ml Tris-HCL, 50mM NaCL, 

50mM NaF, 15mM Na4P2O7, 1mM EDTA, pH 7.4) (30 min; 4°C). Cell lysates were 

incubated with mouse anti-V5-tag antibody, rabbit ant-VSV-tag antibody, rabbit anti-

ARHGEF18 antibody or anti-Flag M2 agarose affinity beads (Sigma Aldrich) for 1 h at 

4°C. Thereafter lysates were incubated with 20 μl of protein G-Sepharose beads for 

mouse antibodies and with 20 μl of protein A-Sepharose beads for rabbit antibodies 

for 0,5 - 1 h at 4°C. Recombinant GST tagged protein was produced in a BL21(DE3) 



E. coli strain. The transformation, expression and purification were performed 

according to standard procedures (22). GST tagged protein was pre-bound to 25µl 

glutathione-Sepharose beads (GE Healthcare) and subsequently incubated with 

lysates of human immortalized podocytes or VSV-ARHGEF18 overexpressing 

HEK293T cells for 1 hour at 4°. The beads were washed 5 times with lysis buffer, 

and bound proteins were resolved in Laemmli sample buffer (95°C, 5 min). 

Precipitated proteins were separated by standard SDS-polyacrylamide gel 

electrophoresis. Following constructs were used: N or C-terminal tagged constructs 

(either FLAG or GFP tag) for human EPB41L5 were purchased and used according 

to manufacturer´s instructions (Genescript, New Jersey, USA). VSV-tagged 

ARHGEF18 was generously provided by K. Matter (20). N-terminal V5-, FLAG-, GFP-

tagged constructs of full length and truncated EPB41L5 were created by cloning into 

pcDNA6 vector using standard cloning procedures. N-terminal GST-tagged 

constructs were created by cloning into pGEX-4T-3 vector. 

 

Expression of EPB41L5 constructs in immortalized human podocytes 

For transfection of immortalized human podocyte cells (kindly provided by M. 

Saleem, University of Bristol, UK) electroporation as described above was performed. 

N or C-terminal tagged constructs (either FLAG or GFP tag) for human EPB41L5 

were purchased and used according to manufacturer´s instructions (Genescript, New 

Jersey, USA). Rescue experiment in respective EPB41L5 KO cells were performed 

by re-expression of GFP-tagged versions of human EPB41L5 as outlined above 

(either full length or respective truncations). Cell size area, as well as pseudopod 

formation and p-MLC fluorescence intensity was recorded as indicated above and 

knockout cells expressing only GFP served as controls (for analysis only cells with 

equalized expression levels were selected). 
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Supplemental Figure 1: Analysis of mRNA expression levels of focal adhesion 
proteins in human glomerular disease entities 
(A-H) Expression values of respective focal adhesion proteins (TALIN-1, TENSIN-2, 
TENSIN-3, FERMT2, EZRIN, INTEGRIN-alphaV, ACTININ-4, PDLIM2) were 
analyzed using the open source database NEPHROSEQ. As disease entities minimal 
change disease, focal segmental sclerosis and collapsing focal segmental glomerular 
sclerosis were analyzed (for statistical data see dataset S3). All FA proteins showed 
a diminished expression level in respective disease entities when compared to 
controls (human nephrectomy samples). 
  



 
 
 
Supplemental Figure 2: Analysis of mapped podocyte adhesome 
(A) Venn diagram comparing the coverage of detected proteins between a previous 
SILAC labeled podocyte proteomics approach 19 and the actual iTRAQ labeled 



proteomics approach. (B) Sub-analysis of the focal adhesome data set revealed 
enrichment of integrin-mediated signaling pathways (C-F) Analysis of cellular 
component, molecular function and biological process of respective enriched FA 
components (see also dataset S1): B1, C1 and D1 GO-Term analysis for log2 fold 
>0.5 enriched proteins; B2, C2 and D2 GO-Term comparison between log2 fold >0.5 
versus log2 fold <0.5 proteins; E1 and E2 selected FA-proteins with log2 fold change 
>0.5 were analyzed again for GO-term enrichment. 
  



 
 
Supplemental Figure 3: Expression of Epb41l5 in murine development and 
localization in glomeruli 
(A) In situ hybridization on E14.5 murine embryo revealed strongest expression in the 
kidney (nt= neural tube, lu= lung, ki=kidney; black arrowhead indicates expression in 
the developing CNS, red boxed area highlights developing kidney). (B-C) During 
glomerular development (C1-C3: comma shaped body, capillary loop stage and 
glomerulus) EPB41L5 was specifically detected in podocytes (glomerular structures 
are highlighted by yellow dotted lines). (D-F) Immunofluorescence for EPB41L5 on 
murine, rat and human glomerular sections (white arrowheads indicate enrichment in 
the podocyte compartment). 



 
 
Supplemental Figure 4: Apico-basal polarization of podocytes while glomerular 
maturation 
(A-F) Antibody staining on cryo-sections of P0 murine kidneys: EPB41L5 together 
with the apical marker PODOCALYXIN showed mutually exclusive staining (B-1-B-5). 
When EPB41L5 was co-stained together with the tight junction marker PAR3 overlap 
could be visualized at the comma shaped stage (D-3), but at later stages EPB41l5 
located more basal than PAR3(D-4 & D-5). The basolateral marker SCRIBBLE 
perfectly co-localized with EPB41L5 in every developmental stage of the glomerulus 
(F-1 – F-5). 
 
 



 
 
 
 



Supplemental Figure 5: EPB41L5 shows decreased expression levels in human 
glomerular diseases 
(A-D) Immunofluorescence studies on human biopsy samples (Diabetic nephropathy 
and focal segmental glomerulosclerosis) revealed a diminished and granular signal 
intensity of EPB41L5, predominantly at the basal compartment of glomerular 
podocytes (red boxes indicate zoom-in areas). (E-H) Analysis of expression levels for 
EPB41L5 in different glomerular disease entities shows decreased expression 
compared to control or healthy donors (for statistical data see dataset S3). 
  



 
 

 
 
 
Supplemental Figure 6: EPB41L5 shows altered localization pattern in 
experimental murine doxorubicin mediated glomerulopathy 
(A-B) Immunofluorescence studies of doxorubicin treated animals revealed 
diminished signal intensity EPB41L5. Respective line scans across the glomerular 
filtration barrier (white dotted lines) reflect the altered signal intensities for NEPHRIN 
and EPB41L5.  
 
  



 
 

 
 
 
Supplemental Figure 7: Targeting strategy and generation of a conditional 
Epb41l5 allele 
(A) Schematic representation of the wild type Epb41l5 allele (top), the targeting 
vector (middle), and the predicted mutant allele (bottom). Black triangles, loxP 
sequence; Gray triangles, frt sequences; Neo, neomycine resistant gene; DT-A, 
diphtheria toxin A-fragment gene. Probe indicates the location of the probe used for 
Southern blot analysis. (B) An example of Southern blot analysis for F1 offspring with 
the probe indicated in (A). 
 
  



 
 
Supplemental Figure 8: Podocyte specific knockout of Epb41l5 leads to 
glomerulosclerosis 
(A-J) Analysis of podocyte marker proteins showed altered expression and 
localization patterns in respective Epb41l5 knockout podocytes compared to wild type 
animals at P7. (K-L) Histological evaluation at P14 demonstrated prominent cystic 
tubular degeneration (L - black arrowheads) and pronounced glomerulosclerosis (L-1 
and L-2; black arrows) in Epb41l5 knockout animals. 
 
 



 
 
 
Supplemental Figure 9: Epb41l5 knockout animals show severe signs of foot 
process effacement 
(A-L) Electron microscopy revealed severe signs of global foot process fusion in 
Epb41l5 knockout animals already at birth. One week after birth discrete 
vacuolization is noticed and slit diaphragms are not discernible any more (red arrows 
indicate fused areas of podocyte FPs; yellow arrows highlight slit diaphragms in wild 
type animals and electron dense accumulations in knockout animals; boxed regions 



indicate zoomed details, Ur: urinary space; Cap: capillaries). (M-R) Scanning electron 
microscopy of glomeruli from wild type and Epb41l5 knockout animals: while wild 
type animals showed a regular pattern of interdigitating foot processes, these 
structures were simplified and retracted in Epb41l5 knockout animals (P = podocyte 
cell body, PP = primary processes; boxed regions indicate areas of disturbed FP 
architecture). 
  



 

 
 

 
Supplemental Figure 10: Apico-basal migration of PAR3 is not influenced by 
EPB41L5 deficiency 
(A) Schematic illustration of podocyte development: while transition from cuboidal 
epithelial cell morphology towards extensive basal specification and generation of 
podocyte foot processes certain marker proteins indicate the shift in polarization. 
PAR3 and slit diaphragm proteins like NEPHRIN migrate from the apical domain 
towards the basal compartment of podocytes. (B-I) The apico-basal migration of 



PAR3 is not impaired in Epb41l5 knockout mice. At the comma and s-shaped stage 
PAR3 is pre-dominantly apically localized (B-E). During further glomerular maturation 
PAR3 undergoes a change in localization towards the more basal compartment. No 
major alterations between wild type and respective knockout animals were observed 
at any developmental stage (PodCre was used synonymously used for hNPHS2Cre). 
(J) Western blot of urine samples detected a WT-1 positive band only in Ebp41l5 
knockout animals. 
  



 
 

 
 
Supplemental Figure 11: Inducible deletion of Epb41l5 in podocytes leads to 
nephrotic syndrome 
(A) Schematic for the breeding strategy to generate inducible podocyte specific 
Epb41l5 knockout mice (left panel). With the age of 4 weeks mice were induced with 
doxycycline via drinking water and after a 2 week induction protocol, weekly follow up 
monitored for levels of proteinuria (right panel). (B-C) Histology of induced Epb41l5 
knockout mice revealed accumulation of proteinaceous casts, dilated tubuli and 
segmental sclerosis in glomeruli (arrows and inserts). (D) Measurement of 
albumin/creatinine ratio revealed early onset of proteinuria already at 1 week after 
induction, further increasing at week 2 (after initial induction period at least 6 animals 
per genotype and time point were analyzed; for statistics see the material and 
methods section).  
 



 
 
 
Supplemental Figure 12: Inducible deletion of Epb41l5 in podocytes results in 
altered expression patterns of podocyte marker proteins. 
(A&B) Immunofluorescence staining confirmed that EPB41L5 protein is reduced in 
hNPHS2rtTA tetOCre EPB41L5fl/fl animals. Due to incomplete recombination residual 
EPB41L5 protein was detectable in some podocytes. (C-J) After 5 weeks of induction 
typical slit diaphragm markers like PODOCIN and NEPHRIN showed a severely 
altered localization pattern, most likely due to heavy proteinuria in respective 
knockout animals (E-H). In contrast, PAR3 showed only modest changes in 
localization and staining intensity (C-D). In accordance with the massively disturbed 



slit diaphragm proteins, also the cytoskeletal component SYNAPTOPODIN showed 
altered localization patterns (I-J). (K-P) Electron microscopy revealed drastic 
alterations of FP morphology in respective induced knockout animals (boxed areas 

indicate zoomed details; yellow arrows highlight fused foot processes; Cap – 

capillaries; Ur – urinary space). 



 
 
Supplemental Figure 13: Characterization of EPB41L5 knockout cell clones 
(A-C) Western blot confirmed loss of EPB41L5 protein in primary podocytes from 
Epb41l5 knockout animals. Epb41l5 knockout podocytes exhibited a decreased 



migratory speed compared to wild type cells (at least n=50 cells over 3 independent 
experiments; dataset S3). (D) Western blot on different wild type, heterozygous and 
knockout CRISPR/CAS9 clones confirmed loss of protein in respective knockout 
podocytes (OE = overexpression of EPB41L5). (E) Western blot of wild type and 
EPB41L5 knockout clones for different FA components did not detect major 
differences. (F, G) Staining for FA components VINCULIN and ACTININ-4 in 
EPB41L5 knockout clones revealed normal morphology and no obvious alterations in 
terms of localization and intensity. (H, I) Overview images highlighting the different 
adhesion properties of respective EPB41L5 knockout clones compared to wild type 
controls. (J) Re-expression of FERM-domain as well as C-terminal EPB41L5 
truncations were not capable of rescuing the spreading defect in EPB41L5 knockout 
cells (at least 87 cells were analyzed at both time points, for statistical data see 
dataset S3). (K) Western blot experiments confirm the efficient expression of GFP-
tagged versions of EPB41L5 in transfected podocytes 48 post-transfection.  
 



 
 

Supplemental Figure 14: EPB41L5 interacts with PAXILLIN 
(A) Morphological analysis of focal adhesions at two different time points while 
cellular spreading detected no major differences between wild type and respective 
knockout clones (n=28, 18 and 25 at time point 30 minutes for WT, KO1 and KO2 
respectively; n=28, 22 and 19 cells at time point 45 minutes for respective genotypes; 
averaged from 2 independent experiments, for statistical see dataset S3). (B) 



PAXILLIN morphology at the leading edge of spreading cells at 45 minutes after 
spreading. (C-E) Impaired FA recovery after blebbistatin washout in knockout cells 
(more than 400 cells were analyzed; dataset S3). (F) Decreased number of mature 
FAs in EPB41L5 KO cells after blebbistatin washout (n=20 cells, dataset S3). (G) Co-
immunoprecipitation assay using epitope tagged versions of EPB41L5 and Paxillin in 
HEK293T cells, tagged luciferase was included as a control. (H-J) Expression of 
either full length, or FERM-domain as well as C-terminal truncations of EPB41L5 
revealed that only the C-terminal part and the full-length version of EPB41L5 result in 
a FA localization pattern (white arrows). In contrast, the FERM-domain containing 
truncation showed a more membranous localization pattern (Phalloidin was used as 
a co-labeling; boxed areas indicate zoomed details). 
  



 
 
 
Supplemental Figure 15: Inhibition of the actomyosin machinery during 
dynamic cellular processes leads to a phenocopy of Ebp41l5 knockout in wild 
type cells 
(A) Representative images illustrating morphological difference between wild type 
and knockout cells while cellular spreading (30 min spreading on collagen IV coated 
glass cover slips; representative low magnification images from at least 5 
independent experiments). (B-D) Quantification of cellular spreading size, perimeter 
and circularity of wild type cells pretreated with either blebbistatin or Y27632 during 
spreading (more than 150 cells per condition were quantified over 3 independent 
experiments; for statistics see the material and methods section). (E, F) 
Quantification of FA in pseudopods of spreading EPB41L5 knockout cells 
demonstrating lower FA numbers as well as decreased average total FA area (n=12 
WT and 23 KO cells were analyzed, for statistics see dataset S3)  
 

 



 
 
 
Supplemental Figure 16: Equal total levels of RhoA and RAC1 in EPB41L5 
knockout cells 
(A) Representative immunofluorescence for MYOSIN-II at the leading edge of wild 
type and EPB41L5 KO cells: accumulation of F-actin and MYOSIN-II was detected at 
the leading edge of KO cells. (B-C) Representative line scans for MYOSIN-II and F-
actin across the cell edge (grey lines indicate respective SDs; at least 10 cells per 
condition). (D) Immunofluorescence for pMLC in EPB41L5 knockout cells with re-
expression of full length EPB41L5 (white dotted line indicates area at the leading 
edge, selected for measurements represented in the main figures). (E) Western blot 
for various GTPases demonstrating equalized total levels between wild type and 
knockout cells. (F, G) Representative western blot for RhoA and Rac1 total levels out 
of equalized input lysates in G-Lisa assay. (H-J) Treatment with blebbistatin or Y-
27632 led to pronounced morphological alterations in EPB41L5 KO cells when 
compared to wild type cells. (at least n=89 cells over 3 independent experiments; 
dataset S3). 



 
 
 
 
 



Supplemental Figure 17: ARHGEF18 and EPB41L5 interaction studies 
(A) Schematic depicting the domain structure of EPB41L5 and including the various 
used truncations. (B-F) Coomassie blue staining of respective GST-tagged truncated 
protein versions indicated different efficiencies in protein expression due to protein 
size (note FERM-domain and C-terminal truncations showed the best expression 
efficiency). (G) Co-immunoprecipitation assay with epitope tagged versions of 
EPB41L5 and ARHGEF18 in HEK293T cells, FLAG-tagged Luciferase was included 
as a control. Precipitated ARHGEF18 was detected using antibody directed against 
ARHGEF18. (H) Mapping studies using additional truncations of EPB41L5 together 
with overexpressed ARHGEF18; only full length EPB41L5 and the FERM-domain 
(FERM A+B/B41 domain) containing truncation was able to precipitate ARHGEF18. 
(I-K) GST-pulldown experiments using either full-length EPB41L5 recombinant 
protein, or respective truncations (FERM, FERM+FA, or C-terminal domain) in 
combination with epitope tagged ARHGEF18. Note: only the FERM-domain 
containing truncated protein versions showed successful pulldown of ARHGEF18. 
  



 

 
 
 
Supplemental Figure 18: ARHGEF18 expression in wild type murine kidneys 
and EPB41L5 knockout cells 
(A) Western blot for ARHGEF18 in adult murine renal cortices and isolated glomeruli; 
TUBULIN was used as a loading control. (B) Western blot experiments for 
ARHGEF18 in EPB41L5 and wild type control cells revealed equal levels for 
ARGEFH18. (C) Decreased levels of p-MLC upon knockdown with ARHGEF18 
siRNA; MLC total levels were used as input controls. 
  



 

 
 
 
Supplemental Figure 19: ECM composition and concentration differentially 
influences EPB41L5 dependent spreading defect 
(A, B) Analysis of cell spreading depending on ECM coating and concentration 
(collagen IV and fibronectin): A clear response to increasing fibronectin 
concentrations was observed in wild type cells as well as knockout clones. This 
response was partially observed also on collagen IV, but here solely in wild type cells 
(one representative experiment out of 3 independent experiments, for statistics see 
dataset S3).  
 
 

 



 
 
 
Supplemental Figure 20: EPB41L5 is sensitive towards podocyte toxic 
substances 
(A) Immortalized human podocytes were treated with either protamine sulfate or 
doxorubicin and stained for EPB41L5 and PAXILLIN. Compared to control cells 
EPB41L5 exhibited a decreased signal intensity at the leading edge of either PS or 
doxorubicin treated cells as highlighted in depicted line scans (A4 and A5). (B-J) 
EPB41L5 as well as ARHGEF18 localize towards the leading edge in spreading 
podocytes. Treatment with podocyte toxic substances such as protamine sulfate or 
doxorubicin resulted in diminished signal intensity for both proteins, whereas F-actin 
was still present at the leading edge zone. 
 
 
 
 
 
 



Supplemental Movies S1-S5 
 

 Movie S1 – EPB41L5 KO – DIC 

 

 Movie S2 – Wild type podocyte – DIC 

 

 Movie S3 – EPB41L5 KO – Lifeact-RFP 

 

 Movie S4 – Wild type podocyte – Lifeact-RFP 

 

 Movie S5 – EPB41L5 KO – Utrophin-RFP 

 
Supplemental Movies  S1-5: Visualization of spreading EPB41L5 KO and wild 
type cells, using DIC, Life-Act-RFP and Utrophin-RFP 
Live cell imaging of spreading EPB41L5-KO and WT cells was performed using differential 
interference contrast (DIC) microscopy or fluorescence microscopy employing either Life-Act-
RFP or Utrophin-RFP as actin probes. 

  



 

  

Supporting Information - 
Antibodies 

    

     Protein Clone Species Manufacturer Application 

act. INTEGRIN-beta1 9EG7 rat BD Transduction Lab. WB (1:1000) 

ACTININ-4   rabbit Abcam IF (1:200), WB (1:1000) 

ARHGEF18   rabbit Origene IF (1:100) 

ARHGEF18 HPA042689 rabbit Atlas Antibodies 
IF (1:100), WB (1:1000), IP 
(1:100) 

B-ACTIN   mouse Sigma WB (1:1000) 

CDC42 sc-87 rabbit Santa Cruz WB (1:1000) 

CRUMBS3   rabbit Sigma IF (1:100) 

EPB41L5 HPA037563  rabbit Atlas Antibodies IF (1:100), WB (1:500) 

EPB41L5 HPA037564 rabbit Atlas Antibodies IF (1:50) 

EPB41L5   rb,gp gen. gift R. Roepman IF (1:100), WB (1:1000) 

FLAG M2 mouse Sigma WB (1:1000) 

FLNA sc-28284 rabbit Santa Cruz WB (1:1000) 

GFP sc-9996 mouse Santa Cruz WB (1:1000) 

GST 27-4577-01 goat 
amersham pharmacia 
biotech WB (1:1000) 

INTEGRIN-beta1 M-106 rabbit Santa Cruz WB (1:1000) 

ITGA2 AB1936 rabbit Millipore WB (1:1000) 

ITGAV ab179475 rabbit Abcam WB (1:1000) 

MLC 3672 rabbit Cell Signaling WB (1:1000) 

MYOSIN-II   rabbit Covance IF (1:100) 

MYPT1 8574 rabbit Cell Signaling WB (1:1000) 

NEPHRIN gp-N2 gp Progene IF (1:300) 

NIDOGEN MAB1946 rat Millipore IF (1:300) 

PAR3   rabbit Millipore IF (1:100) 

PAXILLIN   mouse BD Transduction Lab. IF (1:300),WB (1:1000) 

P-MLC 3674 rabbit Cell Signaling IF (1:100), WB (1:500) 

P-MLC 3671 rabbit Cell Signaling IF (1:100), WB (1:500) 

pMYPT1 5163 rabbit Cell Signaling WB (1:500) 

PODOCALYXIN   mouse gift from Tsilibary E IF (1:100) 

PODOCIN   rabbit Sigma IF (1:200) 

P-PAXILLIN 2541 rabbit Cell Signaling WB (1:1000) 

RAC1 240106 mouse Cell Biolabs IF (1.100) WB (1:1000) 

RHOA ARH03 mouse Cytoskeleton IF (1:100), WB (1:500) 

SCRIBBLE   rabbit Santa Cruz IF (1:125) 

SYNAPTOPODIN   mouse Progene IF (1:300) 

TALIN   mouse Sigma IF (1:100) 

TUBULIN   mouse Sigma WB (1:1000) 

V5 MCA1360 mouse Serotec WB (1:1000), IP(1:2000) 

VINCULIN SPM227 mouse Abcam IF (1:100), WB (1:1000) 

VSV ab18612 rabbit Abcam WB (1:1000), IP(1:1000) 

WT-1 clone 6F-H2 mouse Millipore IF (1:200), WB (1:1000) 

ZYXIN HPA004835 rabbit Atlas Antibodies IF (1:100) 

 

 

   Anti-Flag M2 Agarose Affinity 
beads     Sigma IP (25µl/1ml Lysate) 

Glutathione Sepharose     GE Healthcare IP (25µl/1ml Lysate) 



Supporting Information – uncropped Western Blots 
 

 















 
 

 


