10 research outputs found

    The requirement of matrix ATP for the import of precursor proteins into the mitochondrial matrix and intermembrane space

    Get PDF
    The role of ATP in the matrix for the import of precursor proteins into the various mitochondrial subcompartments was investigated by studying protein translocation at experimentally defined ATP levels. Proteins targeted to the matrix were neither imported or processed when matrix ATP was depleted. Import and processing of precytochrome b2, (pb2), a precursor carrying a bipartite presequence, into the intermembrane space was also strongly dependent on matrix ATP. Preproteins, consisting of 220 or more residues of pb2 fused to dihydrofolate reductase, showed the same requirement for matrix ATP, whereas the import of shorter fusion proteins (up to 167 residues of pb2) was largely independent of matrix ATP. For those intermembrane-space-targeted proteins that did need matrix ATP, the dependence could be relieved either by unfolding these proteins prior to import or by introducing a deletion into the mature portion of the protein thereby impairing the tight folding of the cytochrome b5 domain. These results suggest the following: (a) The import of matrix-targeted preproteins, in addition to a membrane potential ΔΨ, requires matrix ATP [most likely to facilitate reversible binding of mitochondrial heat-shock protein 70 (mt-Hsp70) to incoming precursors], for two steps, securing the presequence on the matrix side of the inner membrane and for the completion of translocation; (b) in the case of intermembrane-space-targeted precursors with bipartite signals, the function of ATP/mt-Hsp70 is not obligatory, as components of the intermembrane-space-sorting pathway may substitute for ATP/mt-Hsp70 function (however, if a tightly folded domain is present in the precursor, ATP/mt-Hsp70 is indispensable); (c) unfolding on the mitochondrial surface of tightly folded segments of preproteins is facilitated by matrix-ATP/mt-Hsp70

    Rat liver sinusoidal endothelial cells (LSECs) express functional low density lipoprotein receptor-related protein-1 (LRP-1)

    Get PDF
    The low density lipoprotein receptor-related protein-1 (LRP-1) is a large, multifunctional endocytic receptor from the LDL receptor family, highly expressed in liver parenchymal cells (PCs), neurons, activated astrocytes, and fibroblasts. The aim of the study was to investigate if liver sinusoidal endothelial cells (LSECs), highly specialized scavenger cells, express LRP-1. To address this question, experiments were performed in vivo and in vitro to determine if receptor associated protein (RAP) and trypsin-activated α2-macroglobulin (α2M∗) were endocytosed in LSECs. Both ligands were cleared from the circulation mainly by the liver. Hepatocellular distribution of intravenously administered ligands, assessed after magnetic bead cell separation using LSEC- and KC-specific antibodies, showed that PCs contained 93% and 82% of liver-associated 125I-RAP and 125I-α2M∗, whereas 5% and 11% were associated with LSECs. Uptake of RAP and α2M∗ in the different liver cell population in vitro was specific and followed by degradation. The uptake of 125I-RAP was not inhibited by ligands to known endocytosis receptors in LSECs, while uptake of 125I-α2M∗ was significantly inhibited by RAP, suggesting the involvement of LRP-1. Immunofluorescence using LRP-1 antibody showed positive staining in LSECs. Ligand blot analyses using total cell proteins and 125I-RAP followed by mass spectrometry further confirmed and identified LRP-1 in LSECs. LSECs express functional LRP-1. An important implication of our findings is that LSECs contribute to the rapid removal of blood borne ligands for LRP-1 and may thus play a role in lipid homeostasis

    Collagen induces maturation of human monocyte-derived dendritic cells by signaling through osteoclast-associated receptor

    No full text
    Osteoclast-associated receptor (OSCAR) is widely expressed on human myeloid cells. Collagen types (Col)I, II, and III have been described as OSCAR ligands, and ColII peptides can induce costimulatory signaling in receptor activator for NF-κB–dependent osteoclastogenesis. In this study, we isolated collagen as an OSCAR-interacting protein from the membranes of murine osteoblasts. We have investigated a functional outcome of the OSCAR–collagen interaction in human monocyte-derived dendritic cells (DCs). OSCAR engagement by ColI/II-induced activation/maturation of DCs is characterized by upregulation of cell surface markers and secretion of cytokines. These collagen-matured DCs (Col-DCs) were efficient drivers of allogeneic and autologous naive T cell proliferation. The T cells expanded by Col-DCs secreted cytokines with no clear T cell polarization pattern. Global RNA profiling revealed that multiple proinflammatory mediators, including cytokines and cytokine receptors, components of the stable immune synapse (namely CD40, CD86, CD80, and ICAM-1), as well as components of TNF and TLR signaling, are transcriptional targets of OSCAR in DCs. Our findings indicate the existence of a novel pathway by which extracellular matrix proteins locally drive maturation of DCs during inflammatory conditions, for example, within synovial tissue of rheumatoid arthritis patients, where collagens become exposed during tissue remodeling and are thus accessible for interaction with infiltrating precursors of DCs

    The enhanced value of combining conventional and "omics" analyses in early assessment of drug-induced hepatobiliary injury

    No full text
    The InnoMed PredTox consortium was formed to evaluate whether conventional preclinical safety assessment can be significantly enhanced by incorporation of molecular profiling (" omics" ) technologies. In short-term toxicological studies in rats, transcriptomics, proteomics and metabolomics data were collected and analyzed in relation to routine clinical chemistry and histopathology. Four of the sixteen hepato- and/or nephrotoxicants given to rats for 1, 3, or 14. days at two dose levels induced similar histopathological effects. These were characterized by bile duct necrosis and hyperplasia and/or increased bilirubin and cholestasis, in addition to hepatocyte necrosis and regeneration, hepatocyte hypertrophy, and hepatic inflammation. Combined analysis of liver transcriptomics data from these studies revealed common gene expression changes which allowed the development of a potential sequence of events on a mechanistic level in accordance with classical endpoint observations. This included genes implicated in early stress responses, regenerative processes, inflammation with inflammatory cell immigration, fibrotic processes, and cholestasis encompassing deregulation of certain membrane transporters. Furthermore, a preliminary classification analysis using transcriptomics data suggested that prediction of cholestasis may be possible based on gene expression changes seen at earlier time-points. Targeted bile acid analysis, based on LC-MS metabonomics data demonstrating increased levels of conjugated or unconjugated bile acids in response to individual compounds, did not provide earlier detection of toxicity as compared to conventional parameters, but may allow distinction of different types of hepatobiliary toxicity. Overall, liver transcriptomics data delivered mechanistic and molecular details in addition to the classical endpoint observations which were further enhanced by targeted bile acid analysis using LC/MS metabonomics. © 2010 Elsevier Inc
    corecore