109 research outputs found

    Efficacy of pre-emergence herbicides in controlling Sumatran fleabane (Conyza sumatrensis) in the off-season

    Get PDF
    Received: February 1st, 2023 ; Accepted: May 7th, 2023 ; Published: May 19th, 2023 ; Correspondence: [email protected] herbicides can be effective in controlling Sumatran fleabane (Conyza sumatrensis [Retz.] E.Walker) at soybean and other crops. The goal was to evaluate the effectiveness of sulfentrazone/diuron, imazethapyr/flumioxazin, flumioxazin, diclosulam, s-metolachlor, imazethapyr, clomazone and imazapic/imazapyr in controlling Sumatran fleabane for application in the off-season before soybean planting. Three experiments were conducted in the off season, with 9 treatments. The control of Sumatran fleabane was evaluated at 28, 42 and 49 days after application (DAA), at 49 DAA was performed counting of plants per m2 . In experiment 1, the worst performance was found for s-metolachlor (58.3% final control), in a situation of lower emergence flow of Sumatran fleabane, with equivalence for the other herbicides. In experiments 2 and 3, with greater emergence flow of Sumatran fleabane, clomazone efficacy stood out (≥ 86.3% final control). A micro-encapsulated formulation of clomazone was used, which causes greater intoxication to this weed due to its slow release into the soil, and presents less loss to the environment. In conditions of lower emergence of Sumatran fleabane, sulfentrazone/diuron, imazethapyr/flumioxazin, flumioxazin, diclosulam, imazethapyr, clomazone and imazapic/imazapyr were effective in controlling it. Even in this condition, s-metolachlor was not effective in controlling Sumatran fleabane. The application of clomazone was effective in controlling Sumatran fleabane in the three experiments. Clomazone is characterized as an important herbicide for use in the off season in the management of this weed before soybean sowing

    Is the squeezing of relic gravitational waves produced by inflation detectable?

    Get PDF
    Grishchuk has shown that the stochastic background of gravitational waves produced by an inflationary phase in the early Universe has an unusual property: it is not a stationary Gaussian random process. Due to squeezing, the phases of the different waves are correlated in a deterministic way, arising from the process of parametric amplification that created them. The resulting random process is Gaussian but non-stationary. This provides a unique signature that could in principle distinguish a background created by inflation from stationary stochastic backgrounds created by other types of processes. We address the question: could this signature be observed with a gravitational wave detector? Sadly, the answer appears to be "no": an experiment which could distinguish the non-stationary behavior would have to last approximately the age of the Universe at the time of measurement. This rules out direct detection by ground and space based gravitational wave detectors, but not indirect detections via the electromagnetic Cosmic Microwave Background Radiation (CMBR).Comment: 17 pages, 4 Postscript figures, uses revtex, psfig, to be submitted to PRD, minor revisions - appendix B clarified, corrected typos, added reference

    Inflationary Perturbations: the Cosmological Schwinger Effect

    Full text link
    This pedagogical review aims at presenting the fundamental aspects of the theory of inflationary cosmological perturbations of quantum-mechanical origin. The analogy with the well-known Schwinger effect is discussed in detail and a systematic comparison of the two physical phenomena is carried out. In particular, it is demonstrated that the two underlying formalisms differ only up to an irrelevant canonical transformation. Hence, the basic physical mechanisms at play are similar in both cases and can be reduced to the quantization of a parametric oscillator leading to particle creation due to the interaction with a classical source: pair production in vacuum is therefore equivalent to the appearance of a growing mode for the cosmological fluctuations. The only difference lies in the nature of the source: an electric field in the case of the Schwinger effect and the gravitational field in the case of inflationary perturbations. Although, in the laboratory, it is notoriously difficult to produce an electric field such that pairs extracted from the vacuum can be detected, the gravitational field in the early universe can be strong enough to lead to observable effects that ultimately reveal themselves as temperature fluctuations in the Cosmic Microwave Background. Finally, the question of how quantum cosmological perturbations can be considered as classical is discussed at the end of the article.Comment: 49 pages, 6 figures, to appear in a LNP volume "Inflationary Cosmology

    Particle creation, classicality and related issues in quantum field theory: I. Formalism and toy models

    Full text link
    The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parametrize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions -- like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in-out states -- are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found for a particular toy model and approximate analytic solutions are obtained in the extreme cases of adiabatic and highly non-adiabatic evolution. We then work out the exact results numerically for a variety of models and compare them with the analytic results and approximations. The formalism is useful in addressing the question of emergence of classicality of the quantum state, its relation to particle production and to clarify several conceptual issues related to this. In Paper II (arXiv:0708.1237), which is a sequel to this, the formalism will be applied to analyze the corresponding issues in the context of quantum field theory in background cosmological models and electric fields.Comment: RevTeX 4; 32 pages; 28 figures; first of a series of two papers, the second being arXiv:0708.1237 [gr-qc]; high resolution figures available from the authors on reques

    On matching conditions for cosmological perturbations

    Get PDF
    We derive the matching conditions for cosmological perturbations in a Friedmann Universe where the equation of state undergoes a sharp jump, for instance as a result of a phase transition. The physics of the transition which is needed to follow the fate of the perturbations is clarified. We dissipate misleading statements made recently in the literature concerning the predictions of the primordial fluctuations from inflation and confirm standard results. Applications to string cosmology are considered.Comment: 20 pages, latex (revtex), no figure

    Particle production and classical condensates in de Sitter space

    Get PDF
    The cosmological particle production in a k=0k=0 expanding de Sitter universe with a Hubble parameter H0H_0 is considered for various values of mass or conformal coupling of a free, scalar field. One finds that, for a minimally coupled field with mass 0m2<9H02/40 \leq m^2 < 9 H_0^2/4 (except for m2=2H02m^2= 2H_0^2), the one-mode occupation number grows to unity soon after the physical wavelength of the mode becomes larger than the Hubble radius, and afterwards diverges as n(t)O(1)(λphys(t)/H01)2νn(t) \sim O(1)(\lambda_{phys}(t)/H_0^{-1})^{2\nu}, where ν[9/4m2/H02]1/2\nu \equiv [9/4 - m^2/H_0^2]^{1/2}. However, for a field with m2>9H02/4m^2 > 9H_0^2/4, the occupation number of a mode outside the Hubble radius is rapidly oscillating and bounded and does not exceed unity. These results, readily generalized for cases of a nonminimal coupling, provide a clear argument that the long-wavelength vacuum fluctuations of low-mass fields in an inflationary universe do show classical behavior, while those of heavy fields do not. The interaction or self-interaction does not appear necessary for the emergence of classical features, which are entirely due to the rapid expansion of the de Sitter background and the upside-down nature of quantum oscillators for modes outside the Hubble radius.Comment: Revtex + 5 postscript figures. Accepted for Phys Rev D15. Revision of Aug 1996 preprint limited to the inclusion and discussion of references suggested by the referee

    Does CPT violation affect the B_d meson life times and decay asymmetries?

    Get PDF
    We study indirect CPT violating effects in B_d meson decays and mixing, taking into account the recent constraints on the CPT violating parameters from the Belle collaboration. The life time difference of the B_d meson mass eigenstates, expected to be negligible in the standard model and many of its CPT conserving extensions, could be sizeable (\sim a few percent of the total width) due to breakdown of this fundamental symmetry. The time evolution of the direct CP violating asymmetries in one amplitude dominated processes (inclusive semileptonic B_d decays, in particular) turn out to be particularly sensitive to this effect.Comment: 17 pages, 4 figures. Typos corrected and references adde

    Hidden long range order in Heisenberg Kagome antiferromagnets

    Full text link
    We give a physical picture of the low-energy sector of the spin 1/2 Heisenberg Kagome antiferromagnet (KAF). It is shown that Kagome lattice can be presented as a set of stars which are arranged in a triangular lattice and contain 12 spins. Each of these stars has two degenerate singlet ground states which can be considered in terms of pseudospin. As a result of interaction between stars we get Hamiltonian of the Ising ferromagnet in magnetic field. So in contrast to the common view there is a long range order in KAF consisting of definite singlet states of the stars.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Inflationary Cosmological Perturbations of Quantum-Mechanical Origin

    Full text link
    This review article aims at presenting the theory of inflation. We first describe the background spacetime behavior during the slow-roll phase and analyze how inflation ends and the Universe reheats. Then, we present the theory of cosmological perturbations with special emphasis on their behavior during inflation. In particular, we discuss the quantum-mechanical nature of the fluctuations and show how the uncertainty principle fixes the amplitude of the perturbations. In a next step, we calculate the inflationary power spectra in the slow-roll approximation and compare these theoretical predictions to the recent high accuracy measurements of the Cosmic Microwave Background radiation (CMBR) anisotropy. We show how these data already constrain the underlying inflationary high energy physics. Finally, we conclude with some speculations about the trans-Planckian problem, arguing that this issue could allow us to open a window on physical phenomena which have never been probed so far.Comment: Review Article, 47 pages, 3 figures. Lectures given at the 40th Karpacz Winter School on Theoretical Physics (Poland, Feb. 2004), submitted to Lecture Notes in Physic

    Detection Limits for Super-Hubble Suppression of Causal Fluctuations

    Full text link
    We investigate to what extent future microwave background experiments might be able to detect a suppression of fluctuation power on large scales in flat and open universe models. Such suppression would arise if fluctuations are generated by causal processes, and a measurement of a small suppression scale would be problematic for inflation models, but consistent with many defect models. More speculatively, a measurement of a suppression scale of the order of the present Hubble radius could provide independent evidence for a fine-tuned inflation model leading to a low-density universe. We find that, depending on the primordial power spectrum, a suppression scale modestly larger than the visible Horizon can be detected, but that the detectability drops very rapidly with increasing scale. For models with two periods of inflation, there is essentially no possibility of detecting a causal suppression scale.Comment: 8 pages, 4 figures, revtex, In Press Physical Review D 200
    corecore