203 research outputs found
KINEMATIC PROFILE OF THE ELITE HANDCYCLIST
A handcycle is a relatively new sports equipment that is a combination of the traditional race wheelchair and a hand operated bicycle crank (Abel, Schneider, Platen, & Struder, 2006). The high mechanical efficiency of this geared fixed-frame racing cycle in comparison to a manual wheelchair can potentially increase the distance a person with a loss of lower limb function can travel. To guide the optimal setup for the handcyclist the influence of crank length (Goosey-Tolfrey, Alfano, & Fowler, 2008; Kramer, Hilker, & Bohm, 2009) and crank configuration (Faupin, Gorce, Meyer, & Thevenon, 2008a; Mossberg, Willman, Topor, Crook, & Patak, 1999) have been investigated. Actual neither research has been done on the upper body kinematics of elite athletes nor on relations between kinematics and performance. The aim of this study was to provide first sport specific information in this area with regards to athletes competing at an international level
Contractile behavior of the gastrocnemius medialis muscle during running in simulated hypogravity
Vigorous exercise countermeasures in microgravity can largely attenuate muscular degeneration, albeit the extent of applied loading is key for the extent of muscle wasting. Running on the International Space Station is usually performed with maximum loads of 70% body weight (0.7 g). However, it has not been investigated how the reduced musculoskeletal loading affects muscle and series elastic element dynamics, and thereby force and power generation. Therefore, this study examined the effects of running on the vertical treadmill facility, a ground-based analog, at simulated 0.7 g on gastrocnemius medialis contractile behavior. The results reveal that fascicle−series elastic element behavior differs between simulated hypogravity and 1 g running. Whilst shorter peak series elastic element lengths at simulated 0.7 g appear to be the result of lower muscular and gravitational forces acting on it, increased fascicle lengths and decreased velocities could not be anticipated, but may inform the development of optimized running training in hypogravity. However, whether the alterations in contractile behavior precipitate musculoskeletal degeneration
warrants further study
Gastrocnemius medialis contractile behavior during running differs between simulated Lunar and Martian gravities
The international partnership of space agencies has agreed to proceed forward to the Moon sustainably. Activities on the Lunar surface (0.16 g) will allow crewmembers to advance the
exploration skills needed when expanding human presence to Mars (0.38 g). Whilst data from actual hypogravity activities are limited to the Apollo missions, simulation studies have indicated that ground reaction forces, mechanical work, muscle activation, and joint angles decrease with declining gravity level. However, these alterations in locomotion biomechanics do not necessarily scale to the gravity level, the reduction in gastrocnemius medialis activation even appears to level off around 0.2 g, while muscle activation pattern remains similar. Thus, it is difficult to predict whether gastrocnemius medialis contractile behavior during running on Moon will basically be the same as on Mars. Therefore, this study investigated lower limb joint kinematics and gastrocnemius medialis behavior during running at 1 g, simulated Martian gravity, and simulated Lunar gravity on the vertical treadmill facility. The results indicate that hypogravity-induced alterations in joint kinematics and contractile behavior still persist between simulated running on the Moon and Mars. This contrasts
with the concept of a ceiling effect and should be carefully considered when evaluating exercise prescriptions and the transferability of locomotion practiced in Lunar gravity to Martian gravity
Finished sequence and assembly of the DUF1220-rich 1q21 region using a haploid human genome
BackgroundAlthough the reference human genome sequence was declared finished in 2003, some regions of the genome remain incomplete due to their complex architecture. One such region, 1q21.1-q21.2, is of increasing interest due to its relevance to human disease and evolution. Elucidation of the exact variants behind these associations has been hampered by the repetitive nature of the region and its incomplete assembly. This region also contains 238 of the 270 human DUF1220 protein domains, which are implicated in human brain evolution and neurodevelopment. Additionally, examinations of this protein domain have been challenging due to the incomplete 1q21 build. To address these problems, a single-haplotype hydatidiform mole BAC library (CHORI-17) was used to produce the first complete sequence of the 1q21.1-q21.2 region.ResultsWe found and addressed several inaccuracies in the GRCh37sequence of the 1q21 region on large and small scales, including genomic rearrangements and inversions, and incorrect gene copy number estimates and assemblies. The DUF1220-encoding NBPF genes required the most corrections, with 3 genes removed, 2 genes reassigned to the 1p11.2 region, 8 genes requiring assembly corrections for DUF1220 domains (~91 DUF1220 domains were misassigned), and multiple instances of nucleotide changes that reassigned the domain to a different DUF1220 subtype. These corrections resulted in an overall increase in DUF1220 copy number, yielding a haploid total of 289 copies. Approximately 20 of these new DUF1220 copies were the result of a segmental duplication from 1q21.2 to 1p11.2 that included two NBPF genes. Interestingly, this duplication may have been the catalyst for the evolutionarily important human lineage-specific chromosome 1 pericentric inversion.ConclusionsThrough the hydatidiform mole genome sequencing effort, the 1q21.1-q21.2 region is complete and misassemblies involving inter- and intra-region duplications have been resolved. The availability of this single haploid sequence path will aid in the investigation of many genetic diseases linked to 1q21, including several associated with DUF1220 copy number variations. Finally, the corrected sequence identified a recent segmental duplication that added 20 additional DUF1220 copies to the human genome, and may have facilitated the chromosome 1 pericentric inversion that is among the most notable human-specific genomic landmarks
Gastrocnemius Medialis Contractile Behavior Is Preserved During 30% Body Weight Supported Gait Training
Rehabilitative body weight supported gait training aims at restoring walking function as
a key element in activities of daily living. Studies demonstrated reductions in muscle and
joint forces, while kinematic gait patterns appear to be preserved with up to 30% weight
support. However, the influence of body weight support on muscle architecture, with
respect to fascicle and series elastic element behavior is unknown, despite this having
potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at
75% of the speed at which they typically transition to running, with 0% and 30% body
weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis
fascicle lengths and pennation angles were measured via ultrasonography. Additionally,
joint kinematics were analyzed to determine gastrocnemius medialis muscle–tendon
unit lengths, consisting of the muscle’s contractile and series elastic elements. Series
elastic element length was assessed using a muscle–tendon unit model. Depending on
whether data were normally distributed, a paired t-test or Wilcoxon signed rank test
was performed to determine if body weight supported walking had any effects on joint
kinematics and fascicle–series elastic element behavior. Walking with 30% body weight
support had no statistically significant effect on joint kinematics and peak series elastic
element length. Furthermore, at the time when peak series elastic element length was
achieved, and on average across the entire stance phase, muscle–tendon unit length,
fascicle length, pennation angle, and fascicle velocity were unchanged with respect
to body weight support. In accordance with unchanged gait kinematics, preservation
of fascicle–series elastic element behavior was observed during walking with 30%
body weight support, which suggests transferability of gait patterns to subsequent
unsupported walking
Movement in low gravity environments (MoLo) programme The Molo-L.O.O.P. study protocol
The aim of this paper is to define an experimental protocol and methodology suitable to estimate in high-fidelity hypogravity conditions the lower limb internal joint reaction forces.
State-of-the-art movement kinetics, kinematics, muscle activation and muscle-tendon unit behaviour during locomotor and plyometric movements will be collected and used as inputs (Objective 1), with musculoskeletal modelling and an optimisation framework used to estimate lower limb internal joint loading (Objective
A New Method for Non-Invasive Estimation of Human Muscle Fiber Type Composition
Background: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT) or type-II fibers and slow-twitch (ST) or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative.status: publishe
- …