8,307 research outputs found

    Multilayer Networks in a Nutshell

    Get PDF
    Complex systems are characterized by many interacting units that give rise to emergent behavior. A particularly advantageous way to study these systems is through the analysis of the networks that encode the interactions among the system's constituents. During the last two decades, network science has provided many insights in natural, social, biological and technological systems. However, real systems are more often than not interconnected, with many interdependencies that are not properly captured by single layer networks. To account for this source of complexity, a more general framework, in which different networks evolve or interact with each other, is needed. These are known as multilayer networks. Here we provide an overview of the basic methodology used to describe multilayer systems as well as of some representative dynamical processes that take place on top of them. We round off the review with a summary of several applications in diverse fields of science.Comment: 16 pages and 3 figures. Submitted for publicatio

    Synthesis of all-digital delay lines

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe synthesis of delay lines (DLs) is a core task during the generation of matched delays, ring oscillator clocks or delay monitors. The main figure of merit of a DL is the fidelity to track variability. Unfortunately, complex systems have a great diversity of timing paths that exhibit different sensitivities to static and dynamic variations. Designing DLs that capture this diversity is an ardous task. This paper proposes an algorithmic approach for the synthesis of DLs that can be integrated in a conventional design flow. The algorithm uses heuristics to perform a combinatorial search in a vast space of solutions that combine different types of gates and wire lengths. The synthesized DLs are (1) all digital, i.e., built of conventional standard cells, (2) accurate in tracking variability and (3) configurable at runtime. Experimental results with a commercial standard cell library confirm the quality of the DLs that only exhibit delay mismatches of about 1% on average over all PVT corners.Peer ReviewedPostprint (author's final draft

    Deep Lidar CNN to Understand the Dynamics of Moving Vehicles

    Get PDF
    Perception technologies in Autonomous Driving are experiencing their golden age due to the advances in Deep Learning. Yet, most of these systems rely on the semantically rich information of RGB images. Deep Learning solutions applied to the data of other sensors typically mounted on autonomous cars (e.g. lidars or radars) are not explored much. In this paper we propose a novel solution to understand the dynamics of moving vehicles of the scene from only lidar information. The main challenge of this problem stems from the fact that we need to disambiguate the proprio-motion of the 'observer' vehicle from that of the external 'observed' vehicles. For this purpose, we devise a CNN architecture which at testing time is fed with pairs of consecutive lidar scans. However, in order to properly learn the parameters of this network, during training we introduce a series of so-called pretext tasks which also leverage on image data. These tasks include semantic information about vehicleness and a novel lidar-flow feature which combines standard image-based optical flow with lidar scans. We obtain very promising results and show that including distilled image information only during training, allows improving the inference results of the network at test time, even when image data is no longer used.Comment: Presented in IEEE ICRA 2018. IEEE Copyrights: Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses. (V2 just corrected comments on arxiv submission

    Precise localization for aerial inspection using augmented reality markers

    Get PDF
    The final publication is available at link.springer.comThis chapter is devoted to explaining a method for precise localization using augmented reality markers. This method can achieve precision of less of 5 mm in position at a distance of 0.7 m, using a visual mark of 17 mm × 17 mm, and it can be used by controller when the aerial robot is doing a manipulation task. The localization method is based on optimizing the alignment of deformable contours from textureless images working from the raw vertexes of the observed contour. The algorithm optimizes the alignment of the XOR area computed by means of computer graphics clipping techniques. The method can run at 25 frames per second.Peer ReviewedPostprint (author's final draft

    From degree-correlated to payoff-correlated activity for an optimal resolution of social dilemmas

    Get PDF
    An active participation of players in evolutionary games depends on several factors, ranging from personal stakes to the properties of the interaction network. Diverse activity patterns thus have to be taken into account when studying the evolution of cooperation in social dilemmas. Here we study the weak prisoner's dilemma game, where the activity of each player is determined in a probabilistic manner either by its degree or by its payoff. While degree-correlated activity introduces cascading failures of cooperation that are particularly severe on scale-free networks with frequently inactive hubs, payoff-correlated activity provides a more nuanced activity profile, which ultimately hinders systemic breakdowns of cooperation. To determine optimal conditions for the evolution of cooperation, we introduce an exponential decay to payoff-correlated activity that determines how fast the activity of a player returns to its default state. We show that there exists an intermediate decay rate, at which the resolution of the social dilemma is optimal. This can be explained by the emerging activity patterns of players, where the inactivity of hubs is compensated effectively by the increased activity of average-degree players, who through their collective influence in the network sustain a higher level of cooperation. The sudden drops in the fraction of cooperators observed with degree-correlated activity therefore vanish, and so does the need for the lengthy spatiotemporal reorganization of compact cooperative clusters. The absence of such asymmetric dynamic instabilities thus leads to an optimal resolution of social dilemmas, especially when the conditions for the evolution of cooperation are strongly adverse.Comment: 8 two-column pages, 6 figures; accepted for publication in Physical Review

    Directionality reduces the impact of epidemics in multilayer networks

    Get PDF
    The study of how diseases spread has greatly benefited from advances in network modeling. Recently, a class of networks known as multilayer graphs has been shown to describe more accurately many real systems, making it possible to address more complex scenarios in epidemiology such as the interaction between different pathogens or multiple strains of the same disease. In this work, we study in depth a class of networks that have gone unnoticed up to now, despite of its relevance for spreading dynamics. Specifically, we focus on directed multilayer networks, characterized by the existence of directed links, either within the layers or across layers. Using the generating function approach and numerical simulations of a stochastic susceptible-infected-susceptible (SIS) model, we calculate the epidemic threshold for these networks for different degree distributions of the networks. Our results show that the main feature that determines the value of the epidemic threshold is the directionality of the links connecting different layers, regardless of the degree distribution chosen. Our findings are of utmost interest given the ubiquitous presence of directed multilayer networks and the widespread use of disease-like spreading processes in a broad range of phenomena such as diffusion processes in social and transportation systems.Comment: 20 pages including 7 figures. Submitted for publicatio

    Peanut Shell for Energy: Properties and Its Potential to Respect the Environment

    Get PDF
    The peanut (Arachys hypogaea) is a plant of the Fabaceae family (legumes), as are chickpeas, lentils, beans, and peas. It is originally from South America and is used mainly for culinary purposes, in confectionery products, or as a nut as well as for the production of biscuits, breads, sweets, cereals, and salads. Also, due to its high percentage of fat, peanuts are used for industrialized products such as oils, flours, inks, creams, lipsticks, etc. According to the Food and Agriculture Organization (FAO) statistical yearbook in 2016, the production of peanuts was 43,982,066 t, produced in 27,660,802 hectares. Peanuts are grown mainly in Asia, with a global production rate of 65.3%, followed by Africa with 26.2%, the Americas with 8.4%, and Oceania with 0.1%. The peanut industry is one of the main generators of agroindustrial waste (shells). This residual biomass (25–30% of the total weight) has a high energy content that is worth exploring. The main objectives of this study are, firstly, to evaluate the energy parameters of peanut shells as a possible solid biofuel applied as an energy source in residential and industrial heating installations. Secondly, different models are analysed to estimate the higher heating value (HHV) for biomass proposed by different scientists and to determine which most accurately fits the determination of this value for peanut shells. Thirdly, we evaluate the reduction in global CO2 emissions that would result from the use of peanut shells as biofuel. The obtained HHV of peanut shells (18.547 MJ/kg) is higher than other biomass sources evaluated, such as olive stones (17.884 MJ/kg) or almond shells (18.200 MJ/kg), and similar to other sources of biomass used at present for home and industrial heating applications. Different prediction models of the HHV value proposed by scientists for different types of biomass have been analysed and the one that best fits the calculation for the peanut shell has been determined. The CO2 reduction that would result from the use of peanut shells as an energy source has been evaluated in all production countries, obtaining values above 0.5 ‰ of their total emissions

    Hallucinating dense optical flow from sparse lidar for autonomous vehicles

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we propose a novel approach to estimate dense optical flow from sparse lidar data acquired on an autonomous vehicle. This is intended to be used as a drop-in replacement of any image-based optical flow system when images are not reliable due to e.g. adverse weather conditions or at night. In order to infer high resolution 2D flows from discrete range data we devise a three-block architecture of multiscale filters that combines multiple intermediate objectives, both in the lidar and image domain. To train this network we introduce a dataset with approximately 20K lidar samples of the Kitti dataset which we have augmented with a pseudo ground-truth image-based optical flow computed using FlowNet2. We demonstrate the effectiveness of our approach on Kitti, and show that despite using the low-resolution and sparse measurements of the lidar, we can regress dense optical flow maps which are at par with those estimated with image-based methods.Peer ReviewedPostprint (author's final draft

    Unsupervised Person Image Synthesis in Arbitrary Poses

    Get PDF
    We present a novel approach for synthesizing photo-realistic images of people in arbitrary poses using generative adversarial learning. Given an input image of a person and a desired pose represented by a 2D skeleton, our model renders the image of the same person under the new pose, synthesizing novel views of the parts visible in the input image and hallucinating those that are not seen. This problem has recently been addressed in a supervised manner, i.e., during training the ground truth images under the new poses are given to the network. We go beyond these approaches by proposing a fully unsupervised strategy. We tackle this challenging scenario by splitting the problem into two principal subtasks. First, we consider a pose conditioned bidirectional generator that maps back the initially rendered image to the original pose, hence being directly comparable to the input image without the need to resort to any training image. Second, we devise a novel loss function that incorporates content and style terms, and aims at producing images of high perceptual quality. Extensive experiments conducted on the DeepFashion dataset demonstrate that the images rendered by our model are very close in appearance to those obtained by fully supervised approaches.Comment: Accepted as Spotlight at CVPR 201

    Advanced Positioning and Location based services in 4G Mobile-IP Radio Access Networks

    Get PDF
    2004 IEEE 15TH IEEE International Symposium on personal, indoor and mobile radio communications (PIMRC 2004), Barcelona, Spain, 5-8 september 2004.This paper proposes an evolved architecture from 3G networks to provide basic and advanced positioning methods for location based services in mobile IPv6-based radio access networks. We start analyzing current status of location-based services (i.e. LBS or LCS) and architectures in 3G networks as well as state-of-the-art research on LBS and mobile Internet. Next we set the requirements the solution should fulfill. We continue proposing the evolved architecture for support of basic and advanced positioning methods, using MIPv6 and HMIPv6 as mobility scenario for the mobile IPv6 based RAN, describing element's functions and changes from current approaches as well as description of the dynamic behavior. We complete the proposal with a bandwidth analysis of the signaling, identifying issues when planning implementation of LCS services in the network
    corecore