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Figure 2. Failure cases on DeepFashion. We display

Figure 3. Qualitative evaluation for one person with multiple target poses. Top: Our image estimation for several target poses,
considering the same condition image. Bottom: Eight target poses coded by a skeleton with 12 semantic points.

Figure 4. Qualitative evaluation for one person with multiple target poses. Top: Our image estimation for several target poses,
considering the same condition image. Bottom: Eight target poses coded by a skeleton with 12 semantic points.
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Figure 1: Given an original image of a person (left) and a desired body pose defined by a 2D skeleton (bottom-row), our
model generates new photo-realistic images of the person under that pose (top-row). The main contribution of our work is to
train this generative model with unlabeled data.

Abstract

We present a novel approach for synthesizing photo-
realistic images of people in arbitrary poses using gener-
ative adversarial learning. Given an input image of a per-
son and a desired pose represented by a 2D skeleton, our
model renders the image of the same person under the new
pose, synthesizing novel views of the parts visible in the in-
put image and hallucinating those that are not seen. This
problem has recently been addressed in a supervised man-
ner [16, 35], i.e., during training the ground truth images
under the new poses are given to the network. We go be-
yond these approaches by proposing a fully unsupervised
strategy. We tackle this challenging scenario by splitting
the problem into two principal subtasks. First, we consider
a pose conditioned bidirectional generator that maps back
the initially rendered image to the original pose, hence be-
ing directly comparable to the input image without the need
to resort to any training image. Second, we devise a novel
loss function that incorporates content and style terms, and
aims at producing images of high perceptual quality. Ex-
tensive experiments conducted on the DeepFashion dataset
demonstrate that the images rendered by our model are very
close in appearance to those obtained by fully supervised
approaches.

1. Introduction

Being able to generate novel photo-realistic views of a
person in an arbitrary pose from a single image would open
the door to many new exciting applications in different ar-
eas, including fashion and e-commerce business, photogra-
phy technologies to automatically edit and animate still im-
ages, and the movie industry to name a few. Addressing
this task without explicitly capturing the underlying pro-
cesses involved in the image formation such as estimating
the 3D geometry of the body, hair and clothes, and the ap-
pearance and reflectance models of the visible and occluded
parts seems an extremely complex endeavor. Nevertheless,
Generative Adversarial Networks (GANs) [3] have shown
impressive results in rendering new realistic images, e.g.,
faces [8, 22], indoor scenes [32] and clothes [39], by di-
rectly learning a generative model from data. Very recently,
they have been used for the particular problem we consider
in this paper of multi-view person image generation from
single-view images [16, 35]. While the results shown by
both these approaches are very promising, they suffer from
the same fundamental limitation in that are methods trained
in a fully supervised manner, that is, they need to be trained
with pairs of images of the same person dressing exactly
the same clothes and under two different poses. This re-
quires from specific datasets, typically in the fashion do-
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main [15, 36]. Tackling the problem in an unsupervised
manner, one could leverage to an unlimited amount of im-
ages and use other datasets for which no multi-view images
of people are available.

In this paper we therefore move a step forward by
proposing a fully unsupervised GAN framework that, given
a photo of a person, automatically generates images of that
person under new camera views and distinct body postures.
The generative model we build is able to synthesize novel
views of the body parts and clothes that are visible in the
original image and also hallucinating those that are not seen.
As shown in Fig. 1, the generated images retain the body
shape, and the new textures are consistent with the origi-
nal image, even when input and desired poses are radically
different. In order to learn this model using unlabeled data
(i.e., our training data consists of single images of people
plus the input and desired poses), we propose a GAN ar-
chitecture that combines ingredients of the pose conditional
adversarial networks [24], Cycle-GANs [38] and the loss
functions used in image style transfer that aim at producing
new images of high perceptual quality [2].

More specifically, to circumvent the need for pairs of
training images of the same person under different poses,
we split the problem in two main stages. First, we con-
sider a pose conditioned bidirectional adversarial architec-
ture which, given a single training photo, initially renders a
new image under the desired pose. This synthesized image
is then rendered-back to the original pose, hence being di-
rectly comparable to the input image. Second, in order to
assess the quality of the rendered images we devise a novel
loss function computed over the 3-tuple of images –original,
rendered in the desired pose, and back-rendered to the orig-
inal pose– that incorporates content and style terms. This
function is conditioned on the pose parameters and enforces
the rendered image to retain the global semantic content of
the original image as well as its style at the joints location.

Extensive evaluation on the DeepFashion dataset [15] us-
ing unlabeled data shows very promising results, even com-
parable with recent approaches trained in a fully supervised
manner [16, 35].

2. Related Work
Rendering a person in an arbitrary pose from a single

image is a severely ill-posed problem as there are many
cloth and body shape ambiguities caused by the new cam-
era view and the changing body pose, as well as large ar-
eas of missing data due to body self-occlusions. Solving
such a rendering problem requires thus introducing several
sources of prior knowledge including, among others, the
body shape, kinematic constraints, hair dynamics, cloth tex-
ture, reflectance models and fashion patterns.

Initial solutions to tackle this problem first built a 3D
model of the object and then synthesized the target images

under the desired views [1, 9, 37]. These methods, however,
were constrained to rigid objects defined by either CAD
models or relatively simple geometric primitives.

More recently, with the advent of deep learning, there
has been a growing interest in learning generative im-
age models from data. Several advanced models have
been proposed for this purpose. These include the varia-
tional autoencoders [11, 12, 25], the autoregressive mod-
els [30, 31], and, most importantly the Generative Adver-
sarial Networks [3].

GANs are very powerful generative models based on
game theory. They simultaneously train a generator net-
work that produces synthetic samples (rendered images in
our context) and a discriminator network that is trained to
distinguish between the generator’s output and the true data.
This idea is embedded by the so-called adversarial loss,
which we shall use in this paper to train our model. GANs
have been shown to produce very realistic images with a
high level of detail. They have been successfully used to
render faces [8, 22], indoor scenes [8, 32] and clothes [39].

Particularly interesting for this work are those ap-
proaches that incorporate conditions to train GANs and
constrain the generation process. Several conditions have
been explored so far, such as discrete labels [19, 20], and
text [23]. Images have also been used as a condition, for in-
stance in the problem of image-to-image translation [6], for
future frame prediction [18], image inpainting [21] and face
alignment [5]. Very recently [39] used both textual descrip-
tions and images as a condition to generate new clothing
outfits. The works that are most related to ours are [16, 35].
They both propose GANs models for the muti-view person
image generation problem. However, the two approaches
use ground-truth supervision during train, i.e., pairs of im-
ages of the same person in two different poses dressed the
same. Tackling the problem in a fully unsupervised man-
ner, as we do in this paper, becomes a much harder task that
requires more elaborate network designs, specially when es-
timating the loss of the rendered images.

The unsupervised strategy we propose is somewhat re-
lated to that used in the Cycle-GANs [13, 14, 38] for image-
to-image translation, also trained in the absence of paired
examples. However, these approaches aim at estimating a
mapping between two distributions of images and no spatial
transformation of the pixels in the input image are consid-
ered. This makes that the overall strategies and network
architectures to address the two problems (image-to-image
translation and multi-view generation) are essentially dif-
ferent.

3. Problem Formulation
Given a single-view image of a person, our goal is

to train a GAN model in an unsupervised manner, al-
lowing to generate photo-realistic pose transformations of
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Figure 2: Overview of our unsupervised approach to generate multi-view images of persons. The proposed architecture
consists of four main components: a generator G, a discriminator D, a 2D pose regressor Φ and the pre-trained feature
extractor Ψ. Neither ground truth image nor any type of label is considered.

the input image while retaining the person identity and
clothes appearance. Formally, we seek to learn the map-
ping (Ipo ,pf ) → Ipf

between an image Ipo ∈ R3×H×W

of a person with pose po and the image Ipf
∈ R3×H×W

of the same person with the desired position pf . Poses
are represented by 2D skeletons with N = 18 joints p =
(u1, . . . ,uN ), where ui = (ui, vi) is the i-th joint pixel lo-
cation in the image. The model is trained in an unsupervised
manner with training samples {Iipo

,pi
o,p

i
f}Ni=1 that do not

contain the ground-truth output image Ipf
.

4. Method

Figure 2 shows an overview of our model. It is composed
of four main modules: (1) A generator G(I|p) that acts as
a differentiable render mapping one input image of a given
person under a specific pose to an output image of the same
person under a different pose. Note that G is used twice
in our network, first to map the input image Ipo

→ Ipf

and then to render the latter back to the original pose Ipf
→

Îpo
; (2) A regressor Φ responsible of estimating the 2D joint

locations of a given image; (3) A discriminator DI(I) that
seeks to discriminate between generated and real samples;
(4) A loss function, computed without ground truth, that
aims to preserve the person identity. For this purpose, we
devise a novel loss function that enforces semantic content
similarity of Ipo

and Îpo
, and style similarity between Ipo

and Ipf
.

In the following subsections we describe in detail each
of these components as well as the 2D pose embedding we
consider.

4.1. Pose Embedding

Drawing inspiration on [34], the 2D location of each
skeleton joint ui in an image I ∈ R3×H×W is represented
as a probability density map Bi ∈ RH×W computed over
the entire image domain as:

Bi[u, v] = P (ui = (u, v)) ∀ (u, v) ∈ U (1)

being U the set of all (u, v) pixel locations in the input im-
age I . For each vertex ui we introduce a Gaussian peak
with variance 0.03 in the position (ui, vi) of the belief map
Bi. The full person pose p is represented as the concatena-
tion of all belief maps p = (B1, . . . ,BN ) ∈ RN×H×W .

4.2. Network Architecture

Generator. Given an input image I of a person, the gen-
erator G(I|p) aims to render a photo-realistic image of that
person in a desired pose p. In order to condition the gener-
ator with the pose we consider the concatenation (I,p) ∈
R(N+3)×H×W and feed this into a feed forward network
that produces an output image with the same dimensions as
I . The generator is implemented as the variation of the net-
work from Johnson et al. [7] proposed by [38] as it achieved
impressive results for the image-to-image translation prob-
lem.

Image Discriminator. We implement the discriminator
DI(I) as a PatchGan [6] network mapping from the input
image I to a matrix YI ∈ R26×26, where YI[i, j] represents
the probability of the overlapping patch ij to be real. This
discriminator contains less parameters than other conven-
tional discriminators typically used for GANs and enforces



high frequency correctness to reduce the blurriness of the
generated images.

Pose Detector. Given an image I of a person, Φ(I) is a 2D
detection network responsible for estimating the skeleton
joint locations p ∈ RN×H×W in the image plane. Φ(I) is
implemented with the ResNet [4] based network by Zhu et
al. [38].

4.3. Learning the Model

The loss function we define contains three terms, namely
an image adversarial loss [3] that pushes the distribution
of the generated images to the distribution of the training
images, the conditional pose loss that enforces the pose of
the generated images to be similar to the desired ones, and
the identity loss that favors to preserve the person identity.
We next describe each of these terms.

Image Adversarial Loss. In order to optimize the gen-
erator G parameters and learn the distribution of the train-
ing data, we perform a standard min-max strategy game be-
tween the generator and the image discriminator DI. The
generator and discriminator are jointly trained with the ob-
jective function LI(G,DI, I,p) where DI tries to maximize
the probability of correctly classifying real and rendered im-
ages while G tries to foul the discriminator. Formally, this
loss is defined as:

LI(G,DI, I,p) = EI∼pdata(I)[logDI(I)]

+ EI∼pdata(I)[log(1−DI(G(I|p)))]
(2)

Conditional Pose Loss. While reducing the image adver-
sial loss, the generator must also reduce the error produced
by the 2D pose regressor Φ. In this way, the generator not
only learns to produce realistic samples but also learns how
to generate samples consistent with the desired pose p. This
loss is defined by:

LP(G,Φ, I,p) = ‖Φ(G(I|p))− p‖22 (3)

Identity Loss. With the two previously defined losses LI
andLP the generator is enforced to generate realistic images
of people in a desired position. However, without ground-
truth supervision there is no constraint to guarantee that the
person identity –e.g., body shape, hair style – in the original
and rendered images is the same. In order to preserve per-
son identity, we draw inspiration on the content-style loss
that was previously introduced in [2] to maintain high per-
ceptual quality in the problem of image style transfer. This
loss consists of two main components, one to retain seman-
tic similarity (‘content’) and the other to retain texture simi-
larity (‘style’). Based on this idea we define two sub-losses

that aim at retaining the identity between the input image
Ipo

and the rendered image Ipf
.

For the content term, we argue that the generator should
be able to render-back the original image Ipo

given the gen-
erated image Ipf

and the original pose po, that is, Îo ≈ Ipo ,
where Îo = G(G(Ipo |pf )|po). Nevertheless, even when
using PatchGan based discriminators, directly comparing
Ipo

and Îpo
at a pixel level would struggle to handle high-

frequency details leading to overly-smoothed images. In-
stead, we compare them based on their semantic content.
Formally, we define the content loss to be:

LContent = ‖Ψz(Ipo)−Ψz(Îpo)‖22 (4)

where Ψz(·) represents the activations at the z-th layer of a
pretrained network.

In order to retain the style of the original image into
the rendered ones we enforce the texture around the visi-
ble joints of Ipo

and Ipf
to be similar. This involves a first

step of extracting – in a differential manner – patches of
features around the joints of Ipo and Ipf

. More specifically,
let Ψz(Ipo

) ∈ RC×H′×W ′
be the semantic features of Ipo

,
and Bpo

∈ RN×H′×W ′
the down-sampled (using average

pooling) probability maps associated to the pose po. The
pose-conditioned patches are computed as:

Xpo,i = Bpo,i ·Ψz(Ipo) ∀i ∈ {1, . . . , N} (5)

The representation of a patch style is then captured by
the correlation between the different channels of its hidden
representations Xpo,i using the spatial extend of the fea-
ture maps as the expectation. As previously done in [2]
this can be implemented by computing the Gram matrix
Gpo,i ∈ RC×C for each patch i, defined as the inner product
between the vectorized feature maps of Xpo,i. The Patch-
Style loss is then computed as the mean square error be-
tween visible pairs of Gram matrices of the same joint in
both images Ipo

and Ipf
:

LPatch-Style =
1

N

N∑
i

(Gpo,i − Gpf ,i

H ′W ′

)2

(6)

Finally, we define the identity loss as the weighted sum
of the content and style losses:

LId = LContent(Ψ, Ipo , Îpo)

+ λLPatch-Style(Ψ, Ipo , Ipf
,po,pf )

(7)

where he parameter λ controls the relative importance or
the two components.



Full Loss. We take the full loss as a linear combination of
all previous loss terms:

L = LI(G,DI, Ipo
,pf ) + λPLP(G,Φ, Ipo

,pf )

+ LI(G,DI, Ipf
,po) + λPLP(G,Φ, Ipf

,po)

+ λIdLId + λPLΦ(I,po)

(8)

whereLΦ(I,po) = ‖Φ(Ipo)−po‖22 is used to train the pose
regressor Φ. Our ultimate goal is to solve:

G? = arg min
G

max
DI,Φ
L (9)

Some could argue that the terms LI and LP for the re-
covered image Îpo

are not required because the same infor-
mation is expressed by LContent. However, we experienced
that these two terms improved robustness and convergence
properties during training.

5. Implementation Details
In order to reduce the model oscillation and obtain more

photo-realistic results we use the learning trick introduced
in [17] and replace the negative log likelihood of the adver-
sarial loss by a least square loss. The image features Ψz(I)
are obtained from a pretrained VGG16 [28] with z = 7.
We use Adam solver [10] with learning rate of 0.0002 for
the generator, 0.0001 for the discriminators and a batch size
12. We train for 300 epochs with a linear decreasing rate
after epoch 100. The weights for the loss terms are set to
λP = 700 and λId = 0.3. As in [27], to improve training
stability, we update the discriminators using a buffer with
the previous rendered images rather than those generated
in the current iteration. During training, the pf poses are
randomly sampled from those in the training set.

6. Experimental Evaluation
We verify the effectiveness of our unsupervised GAN

model through quantitative and qualitative evaluations.
We next describe the dataset we used for evaluation and
the results we obtained. Supplementary material can
be found on http://www.albertpumarola.com/
research/person-synthesis/.
Benchmark. We have evaluated our approach on the pub-
licly available In-shop Clothes Retrieval Benchmark of the
DeepFashion dataset [15], that contains a large number of
clothing images with diverse person poses. Images of the
dataset were initially resized to a fixed size of 256×256. We
then applied data augmentation with all three possible flips
per each image. After that, 2D pose was computed in all
images using the Convolutional Pose Machine (CPM) [34],
and images for which CPM failed were removed from the
dataset. From the remaining images, we randomly selected
24,145 for training and 5,000 for test. Test samples are also

Method SSIM IS
Our Approach 0.747 2.97
Ma et al. NIPS’2017 [16] 0.762 3.09
Zhao et al. ArXiv’2017 [35] 0.620 3.03
Sohn et al. NIPS’2015 [29]* 0.580 2.35
Mirza et al. ArXiv’2014 [19]* 0.590 2.45

Table 1: Quantitative Evaluation on the DeepFashion
dataset. SSIM and IS for our unsupervised approach and
four supervised state-of-the-art methods. For all measures,
the higher is better. ‘*’ indicates that these results were
taken from [35]. Note: These results are just indicative, as
the test splits in previous approaches are not available and
may differ between the different methods of the table. Nev-
ertheless, note that the quantitative results put our unsuper-
vised approach on a par with other supervised approaches.

associated to a desired pose and its corresponding ground
truth image, that will be used for quantitative evaluation
purposes. Training images are only associated to a desired
2D pose. No ground truth warped image is considered dur-
ing training.

6.1. Quantitative results

Since test samples are annotated with ground truth im-
ages under the desired pose, we can quantitatively evalu-
ate the quality of the synthesis. Specifically, we use the
metrics considered by previous approaches on multi-view
person generation [16, 35], namely the Structural Similar-
ity (SSIM) [33] and the Inception Score (IS) [26]. These are
fairly standard metrics that focus more on the overall quality
of the generated image rather than on the pixel-level simi-
larity between the generated image and the ground truth.
Concretely, SSIM models the changes in the structural in-
formation and IS give high scores for images with a large
semantic content.

In Table 1 we report these scores for our approach and
the two fully supervised methods [16] and [35], when eval-
uated on the DeepFashion [15] dataset. Two additional im-
plementations of a Variational AutoEncoder (VAE) [29] and
a Conditional GAN (CGAN) model [19], reported in [35],
are included. It is worth to point that while all methods are
evaluated on the same dataset, the test splits in each case are
not the same. Therefore, the results on this table should be
considered only as indicative. In any event, note that the two
metrics indicate that the quality of the synthesis obtained by
our unsupervised approach are very similar to the most re-
cent supervised approaches and even outperform previous
VAE and CGAN implementations.

6.2. Qualitative results

We next present and discuss a series of qualitative results
that will highlight the main characteristics of the proposed

http://www.albertpumarola.com/research/person-synthesis/
http://www.albertpumarola.com/research/person-synthesis/
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Figure 1. Results on real data. Reconstruction samples on the CVLab sequences

2

Figure 3: Test results on the DeepFashion [15] dataset. Each test sample is represented by 4 images: input image, 2D
desired pose, synthesized image and ground truth.
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Figure 2. Failure cases on DeepFashion. We display

Figure 3. Qualitative evaluation for one person with multiple target poses. Top: Our image estimation for several target poses,
considering the same condition image. Bottom: Eight target poses coded by a skeleton with 12 semantic points.
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Figure 4: Test failures on the DeepFashion [15] dataset. We represent four different types of errors that typically occur in
the failure cases (see text for details).

approach, including its ability to generalize to novel poses,
to hallucinate image patches not observed in the original
image and to render textures with high-frequency details.

In the Teaser image 1 we observe all these characteris-
tics. First, note the ability of our GAN model to generalize
to desired poses very different from that in the original im-
age. In this case given a frontal image of the upper body of
a woman, we show some of the generated images in which
her pose is rotated by 180 deg. In the right-most image of
this example, the network is also able to hallucinate the two
legs, not seen in the original image (despite not rendering
the skirt). For this particular example, the network con-
vincingly renders the high frequency details of the blouse.
This is a very important characteristic of our model, and is
a direct consequence of the loss function we have designed,
and in particular of the term LPatch-Style in Eq. (6) that aims
at retaining the texture details of the original image into the
generated one. This is in contrast to most of the renders gen-
erated by other GAN models [16, 35, 39], which typically
wash out texture details.

Figure 3 presents another series of results obtained with
our model. In this case, each synthetically generated image
is accompanied by the ground truth. Note again, the num-
ber of complex examples that are successfully addressed.
Several cases show the hallucination of frontal poses from
original poses facing back (or vice versa). Also are worth
to mention those examples where the original image is in
a side position with only one arm being observed, and the
desired pose is either frontal of backwards, having to hal-
lucinate both arms. Some of the textures of the t-shirts
have very high frequency patterns and textures (example 4-
th row/2-nd column, examples 6-th row) that are convinc-
ingly rendered under new poses.

Failure cases. Tackling such an unconstrained problem in
a fully unsupervised manner causes a number of errors. We

have roughly split them into four categories which we sum-
marize in Figure 4. The first type of error (top-left) is pro-
duced when textures in the original image are not correctly
mapped onto the generated image. In this case, the par-
tially observed dark trousers are transferred to a lower leg,
resembling boots. In the top-right example, the face of the
original image is not fully wash out in the new generated
image. In the bottom-left we show a type of error which we
denote as ‘geometric error’, where the pose of the original
image is not properly transferred to the target image. The
bottom-right image shows an example in which a part of the
body in the original image (hand) is mapped as a texture in
the synthesized one.

Ablation study. Each component is crucial for the proper
performance of the system. DI and LI constrain the system
to generate realistic images; Φ and LP ensure the genera-
tor conditions the image generation to the given pose; and
Ψ and LId force the generator to preserve the input image
texture. Removing any of these elements would damage
our network. For instance, Figure 5 shows the results when
replacing LId by the standard L1 loss used by most state-of-
the-art GAN works. As it can observed in the last column of
the figure, although Îpo is preserving the low frequency tex-
ture of the original image, the person identity in Ipf

is lost
and all results tend to converge to a mean brunette woman
with white t-shirt and blue jeans.

Images with background. To further test the limits of our
model Figure 6 presents an evaluation of the model perfor-
mance when the input image contains background. Surpris-
ingly, although the model has no loss on background con-
sistency nor was trained with images with background, the
results are still very consistent. The person is quite cor-
rectly rendered, while the background is over-smoothed. To
become robust to background would require more complex
datasets and specialized loss functions.



Figure 5: L1 vs Identity Loss. Synthetic samples obtained
by our model when it is trained with L1 loss and condi-
tioned with the same inputs as in Figure 1. The first five
columns correspond to Îpf

, and the last column is the cycle
image Îpo . Comparing these results with those of Figure 1
it becomes clear that the L1 loss is not able to capture the
person identity.

7. Conclusion

We have presented a novel approach for generating new
images of a person under arbitrary poses using a GAN
model that can be trained in a fully unsupervised manner.
This advances state-of-the-art, which so far, had only ad-
dressed the problem using supervision. To tackle this chal-
lenge, we have proposed an new framework that circum-
vents the need of training data by optimizing a loss function
that only depends on the input image and the rendered one,
and aims at retaining the style and semantic content of the
original image. Quantitative and qualitative evaluation on
the DeepFashion [15] dataset shows very promising results,
even for new body poses that highly differ from the input
one and require hallucinating large portions of the image. In
the future, we plan to further exploit our approach in other
datasets (not only of humans) in the wild for which super-
vision is not possible. An important issue that will need to
be addressed in this case, is the influence of complex back-
grounds, and how they interfere in the generation process.
Finally, in order to improve the failure cases we have dis-
cussed, we will explore novel object- and geometry-aware
loss functions.
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Figure 1.

2

Figure 6: Testing on images with background. Given the
original image of a person with background on the left and
a desired body pose defined by a 2D skeleton (bottom-row),
the model generates the person under that pose shown in
the top-row. Albeit our model is trained with images with
no background it does generalize fairly well to this situation
(compare with the results of Figure 1).
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