17,883 research outputs found

    The nuclear pseudospin symmetry along an isotopic chain

    Full text link
    We investigate the isospin dependence of pseudospin symmetry in the chain of tin isotopes (from 120^{120}Sn until 170^{170}Sn). Using a Woods-Saxon parametrization of the nuclear potential for these isotopes we study in detail the effect of the vector-isovector ρ\rho and Coulomb potentials in the energy splittings of neutron and proton pseudospin partners in the isotopic chain. We conclude that the realization of nuclear pseudospin symmetry does not change considerably with the mass number, and is always favored for neutrons. We also find that the ρ\rho potential accounts for essentially all the pseudospin isospin asymmetry observed and that the Coulomb potential plays a negligible role in this asymmetry. This can be explained by the dynamical nature of pseudospin symmetry in nuclei, namely the dependence of the pseudospin splittings on the shape of the nuclear mean-field potential.Comment: 4 pages, 4 figures, to be published in Brazilian Journal of Physic

    Dynamical nature of the nuclear pseudospin and its isospin asymmetry

    Full text link
    Pseudospin symmetry in nuclei is investigated by solving the Dirac equation with Woods-Saxon scalar and vector radial potentials. We relate the pseudospin interaction with a pseudospin-orbit term in a Schroedinger-like equation for the lower component of the Dirac spinor. We show that this term gives a large contribution to the energy splittings of pseudospin partners, so that the near pseudospin degeneracy arises from a significant cancellation among the different terms in that equation. This is a manifestation of the dynamical character of this symmetry in the nucleus. We analyze the isospin dependence of the pseudospin symmetry in a nuclear isotope chain by including a vector-isovector potential V_rho and a Coulomb potential and conclude that V_rho gives the main contribution to the observed pseudospin isospin asymmetry.Comment: 4 pages, 2 figures, uses World Scientific style file. Contribution presented at the VIII International Workshop on Hadron Physics, Bento Goncalves, RS, Brazil, April 14-19, 2002. To be published by World Scientific in the proceedings of the "International Workshop on Hadron Physics 2002

    Transport in tunnelling recombination junctions: a combined computer simulation study

    Get PDF
    The implementation of trap-assisted tunneling of charge carriers into numerical simulators ASPIN and D-AMPS is briefly described. Important modeling details are highlighted and compared. In spite of the considerable differences in both approaches, the problems encountered and their solutions are surprisingly similar. Simulation results obtained for several tunneling recombination junctions made of amorphous silicon (a-Si), amorphous silicon carbide (a-SiC), or microcrystalline silicon (”c-Si) are analyzed. Identical conclusions can be drawn using either of the simulators. Realistic performances of a-Si/a-Si tandem solar cells can be reproduced with simulation programs by assuming that extended-state mobility increases exponentially with the electric field. The same field-enhanced mobilities are needed in single tunneling recombination junctions in order to achieve measured current levels. Temperature dependence of the current-voltage characteristics indicates that the activation energy of enhanced mobilities should be determined. Apparent discrepancies between simulation results and measurements are explained and eliminated making use of Gill’s law. For application in tandem and triple solar cell structures, tunneling recombination junctions made of (”c-Si) are the most promising of all examined structures.Fil: Vukadinovic, M.. University of Ljubljana; EsloveniaFil: Smole, F.. University of Ljubljana; EsloveniaFil: Topič, M.. University of Ljubljana; EsloveniaFil: Schropp, R. E. .. Utrecht University; PaĂ­ses BajosFil: Rubinelli, Francisco Alberto. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Santa Fe. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica. Universidad Nacional del Litoral. Instituto de Desarrollo TecnolĂłgico para la Industria QuĂ­mica; Argentin

    Challenging the weak cosmic censorship conjecture with charged quantum particles

    Get PDF
    Motivated by the recent attempts to violate the weak cosmic censorship conjecture for near-extreme black-holes, we consider the possibility of overcharging a near-extreme Reissner-Nordstr\"om black hole by the quantum tunneling of charged particles. We consider the scattering of spin-0 and spin-1/2 particles by the black hole in a unified framework and obtain analytically, for the first time, the pertinent reflection and transmission coefficients without any small charge approximation. Based on these results, we propose some gedanken experiments that could lead to the violation of the weak cosmic censorship conjecture due to the (classically forbidden) absorption of small energy charged particles by the black hole. As for the case of scattering in Kerr spacetimes, our results demonstrate explicitly that scalar fields are subject to (electrical) superradiance phenomenon, while spin-1/2 fields are not. Superradiance impose some limitations on the gedanken experiments involving spin-0 fields, favoring, in this way, the mechanisms for creation of a naked singularity by the quantum tunneling of spin-1/2 charged fermions. We also discuss the implications that vacuum polarization effects and quantum statistics might have on these gedanken experiments. In particular, we show that they are not enough to prevent the absorption of incident small energy particles and, consequently, the formation of a naked singularity.Comment: 9 pages; Final version to appear in PR

    Spin and pseudospin symmetries in the antinucleon spectrum of nuclei

    Full text link
    Spin and pseudospin symmetries in the spectra of nucleons and antinucleons are studied in a relativistic mean-field theory with scalar and vector Woods-Saxon potentials, in which the strength of the latter is allowed to change. We observe that, for nucleons and antinucleons, the spin symmetry is of perturbative nature and it is almost an exact symmetry in the physical region for antinucleons. The opposite situation is found in the pseudospin symmetry case, which is better realized for nucleons than for antinucleons, but is of dynamical nature and cannot be viewed in a perturbative way both for nucleons and antinucleons. This is shown by computing the spin-orbit and pseudospin-orbit couplings for selected spin and pseudospin partners in both spectra.Comment: 8 figures, uses revtex 4.1 macro

    Tensor coupling and pseudospin symmetry in nuclei

    Full text link
    In this work we study the contribution of the isoscalar tensor coupling to the realization of pseudospin symmetry in nuclei. Using realistic values for the tensor coupling strength, we show that this coupling reduces noticeably the pseudospin splittings, especially for single-particle levels near the Fermi surface. By using an energy decomposition of the pseudospin energy splittings, we show that the changes in these splittings come by mainly through the changes induced in the lower radial wave function for the low-lying pseudospin partners, and by changes in the expectation value of the pseudospin-orbit coupling term for surface partners. This allows us to confirm the conclusion already reached in previous studies, namely that the pseudospin symmetry in nuclei is of a dynamical nature.Comment: 11 pages, 5 figures, uses REVTeX macro

    Glassy behaviour in short range lattice models without quenched disorder

    Full text link
    We investigate the quenching process in lattice systems with short range interaction and several crystalline states as ground states. We consider in particular the following systems on square lattice: - hard particle (exclusion) model; - q states planar Potts model. The system is initially in a homogeneous disordered phase and relaxes toward a new equilibrium state as soon as the temperature is rapidly lowered. The time evolution can be described numerically by a stochastic process such as the Metropolis algorithm. The number of pure, equivalent, ground states is q for the Potts model and r for the hard particle model, and it is known that for r or q larger or equal to d+1, the final equilibrium state may be polycrystalline, i.e. not made of a uniform phase. We find that in addition n_g and q_g exist such that for r > r_g, or q > q_g the system evolves toward a glassy state, i.e. a state in which the ratio of the interaction energy among the different crystalline phases to the total energy of the system never vanishes; moreover we find indications that r_g=q_g. We infer that q=q_g (and r=r_g) corresponds to the crossing from second order to discontinuous transition in the phase diagram of the system.Comment: 10 pages, 3 figure

    On the relativistic L-S coupling

    Get PDF
    The fact that the Dirac equation is linear in the space and time derivatives leads to the coupling of spin and orbital angular momenta that is of a pure relativistic nature. We illustrate this fact by computing the solutions of the Dirac equation in an infinite spherical well, which allows to go from the relativistic to the non-relativistic limit by just varying the radius of the well.Comment: LateX2e, 12 pages, 1 figure, accepted in Eur. J. Phy

    Ostrogradski approach for the Regge-Teitelboim type cosmology

    Full text link
    We present an alternative geometric inspired derivation of the quantum cosmology arising from a brane universe in the context of {\it geodetic gravity}. We set up the Regge-Teitelboim model to describe our universe, and we recover its original dynamics by thinking of such field theory as a second-order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. Our analysis highlights the second-order derivative nature of the RT model and the inherited geometrical aspect of the theory. A canonical transformation brings us to the internal physical geometry of the theory and induces its quantization straightforwardly. By using the Dirac canonical quantization method our approach comprises the management of both first- and second-class constraints where the counting of degrees of freedom follows accordingly. At the quantum level our Wheeler-De Witt Wheeler equation agrees with previous results recently found. On these lines, we also comment upon the compatibility of our approach with the Hamiltonian approach proposed by Davidson and coworkers.Comment: 11 pages, 2 figures, accepted for publication in Phys. Rev.
    • 

    corecore