2,493 research outputs found

    Persistent Chaos in High Dimensions

    Full text link
    An extensive statistical survey of universal approximators shows that as the dimension of a typical dissipative dynamical system is increased, the number of positive Lyapunov exponents increases monotonically and the number of parameter windows with periodic behavior decreases. A subset of parameter space remains in which topological change induced by small parameter variation is very common. It turns out, however, that if the system's dimension is sufficiently high, this inevitable, and expected, topological change is never catastrophic, in the sense chaotic behavior is preserved. One concludes that deterministic chaos is persistent in high dimensions.Comment: 4 pages, 3 figures; Changes in response to referee comment

    High-speed Civil Transport Aircraft Emissions

    Get PDF
    Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance

    Understanding the complex phase diagram of uranium: the role of electron-phonon coupling

    Full text link
    We report an experimental determination of the dispersion of the soft phonon mode along [1,0,0] in uranium as a function of pressure. The energies of these phonons increase rapidly, with conventional behavior found by 20 GPa, as predicted by recent theory. New calculations demonstrate the strong pressure (and momentum) dependence of the electron-phonon coupling, whereas the Fermi-surface nesting is surprisingly independent of pressure. This allows a full understanding of the complex phase diagram of uranium, and the interplay between the charge-density wave and superconductivity

    Angle-resolved photoemission and first-principles electronic structure of single-crystalline α\alpha-uranium (001)

    Full text link
    Continuing the photoemission study begun with the work of Opeil et al. [Phys. Rev. B \textbf{73}, 165109 (2006)], in this paper we report results of an angle-resolved photoemission spectroscopy (ARPES) study performed on a high-quality single-crystal α\alpha-uranium at 173 K. The absence of surface-reconstruction effects is verified using X-ray Laue and low-energy electron diffraction (LEED) patterns. We compare the ARPES intensity map with first-principles band structure calculations using a generalized gradient approximation (GGA) and we find good correlations with the calculated dispersion of the electronic bands

    Observation of a continuous phase transition in a shape-memory alloy

    Full text link
    Elastic neutron-scattering, inelastic x-ray scattering, specific-heat, and pressure-dependent electrical transport measurements have been made on single crystals of AuZn and Au_{0.52}Zn_{0.48} above and below their martensitic transition temperatures (T_M=64K and 45K, respectively). In each composition, elastic neutron scattering detects new commensurate Bragg peaks (modulation) appearing at Q = (1.33,0.67,0) at temperatures corresponding to each sample's T_M. Although the new Bragg peaks appear in a discontinuous manner in the Au_{0.52}Zn_{0.48} sample, they appear in a continuous manner in AuZn. Surprising us, the temperature dependence of the AuZn Bragg peak intensity and the specific-heat jump near the transition temperature are in favorable accord with a mean-field approximation. A Landau-theory-based fit to the pressure dependence of the transition temperature suggests the presence of a critical endpoint in the AuZn phase diagram located at T_M*=2.7K and p*=3.1GPa, with a quantum saturation temperature \theta_s=48.3 +/- 3.7K.Comment: 6 figure

    Superconducting gap structure of the 115's revisited

    Full text link
    Density functional theory calculations of the electronic structure of Ce- and Pu-based heavy fermion superconductors in the so-called 115 family are performed. The gap equation is used to consider which superconducting order parameters are most favorable assuming a pairing interaction that is peaked at (\pi,\pi,q_z) - the wavevector for the antiferromagnetic ordering found in close proximity. In addition to the commonly accepted dx2y2d_{x^2-y^2} order parameter, there is evidence that an extended s-wave order parameter with nodes is also plausible. We discuss whether these results are consistent with current observations and possible measurements that could help distinguish between these scenarios.Comment: 8 pages, 4 figures; Accepted for publication in JPC

    An analytical stability theory for Faraday waves and the observation of the harmonic surface response

    Full text link
    We present an analytical stability theory for the onset of the Faraday instability, applying over a wide frequency range between shallow water gravity and deep water capillary waves. For sufficiently thin fluid layers the surface is predicted to occur in harmonic rather than subharmonic resonance with the forcing. An experimental confirmation of this result is given. PACS: 47.20.Ma, 47.20.Gv, 47.15.CbComment: 10 pages (LaTeX-file), 3 figures (Postscript) Submitted for publicatio

    Algebraic Torsion in Contact Manifolds

    Full text link
    We extract a nonnegative integer-valued invariant, which we call the "order of algebraic torsion", from the Symplectic Field Theory of a closed contact manifold, and show that its finiteness gives obstructions to the existence of symplectic fillings and exact symplectic cobordisms. A contact manifold has algebraic torsion of order zero if and only if it is algebraically overtwisted (i.e. has trivial contact homology), and any contact 3-manifold with positive Giroux torsion has algebraic torsion of order one (though the converse is not true). We also construct examples for each nonnegative k of contact 3-manifolds that have algebraic torsion of order k but not k - 1, and derive consequences for contact surgeries on such manifolds. The appendix by Michael Hutchings gives an alternative proof of our cobordism obstructions in dimension three using a refinement of the contact invariant in Embedded Contact Homology.Comment: 53 pages, 4 figures, with an appendix by Michael Hutchings; v.3 is a final update to agree with the published paper, and also corrects a minor error that appeared in the published version of the appendi

    The role of the g9/2 orbital in the development of collectivity in the A = 60 region: The case of 61Co

    Get PDF
    An extensive study of the level structure of 61Co has been performed following the complex 26Mg(48Ca, 2a4npg)61Co reaction at beam energies of 275, 290 and 320 MeV using Gammasphere and the Fragment Mass Analyzer (FMA). The low-spin structure is discussed within the framework of shell-model calculations using the GXPF1A effective interaction. Two quasi-rotational bands consisting of stretched-E2 transitions have been established up to spins I = 41/2 and (43/2), and excitation energies of 17 and 20 MeV, respectively. These are interpreted as signature partners built on a neutron {\nu}(g9/2)2 configuration coupled to a proton {\pi}p3/2 state, based on Cranked Shell Model (CSM) calculations and comparisons with observations in neighboring nuclei. In addition, four I = 1 bands were populated to high spin, with the yrast dipole band interpreted as a possible candidate for the shears mechanism, a process seldom observed thus far in this mass region

    Fermi Surface of The One-dimensional Kondo Lattice Model

    Full text link
    We show a strong indication of the existence of a large Fermi surface in the one-dimensional Kondo lattice model. The characteristic wave vector of the model is found to be kF=(1+ρ)π/2k_F=(1+\rho )\pi /2, ρ\rho being the density of the conduction electrons. This result is at first obtained for a variant of the model that includes an antiferromagnetic Heisenberg interaction JHJ_H between the local moments. It is then directly observed in the conventional Kondo lattice (JH=0)(J_H=0), in the narrow range of Kondo couplings where the long distance properties of the model are numerically accessible.Comment: 11 pages, 6 figure
    corecore