630 research outputs found

    Suppressing decoherence of quantum algorithms by jump codes

    Full text link
    The stabilizing properties of one-error correcting jump codes are explored under realistic non-ideal conditions. For this purpose the quantum algorithm of the tent-map is decomposed into a universal set of Hamiltonian quantum gates which ensure perfect correction of spontaneous decay processes under ideal circumstances even if they occur during a gate operation. An entanglement gate is presented which is capable of entangling any two logical qubits of different one-error correcting code spaces. With the help of this gate simultaneous spontaneous decay processes affecting physical qubits of different code spaces can be corrected and decoherence can be suppressed significantly

    Calculations of the moon's heat history at different concentrations of radioactive elements taking account of the material differentiation with melting

    Get PDF
    A mathematical procedure for analyzing the heat conductivity of the lunar surface is discussed. The solution is based on homogeneous and laminated moon models and considers the effects of radioactive elements conveyed to the lunar surface by melting. The various parameters which introduce uncertainties into the numerical analysis are identified. The application of data obtained from radio astronomy and from analyses of lunar samples returned by the Apollo flights is explained. Tables of data are included to show the types and amounts of radioactive materials which have been identified

    Calculations of the moon's thermal history at different concentrations of radioactive elements, taking into account differentiation on melting

    Get PDF
    Calculations of the thermal history of the moon were done by solving the thermal conductivity equation for the case in which the heat sources are the long lived radioactive elements Th, U, and K-40. The concentrations of these elements were adjusted to give 4 variations of heat flow. Calculations indicated that the moon's interior was heated to melting during the first 0.7 to 2.3 x 10 to the 9th power years. The maximum fusion involved practically the entire moon to a distance from 15 to 45 km beneath the surface, and started 3.5 to 4.0 x 10 to the 9th power years ago, or 2.5 x 3.0 x 10 to the 9th power years ago and continued for 1 to 2 x 10 to the 9th power years. The moon today is cooling. The current thickness of the solid crust is from 150 to 200 km and the heat flow exceeds the stationary value 1.5 fold

    Controlling quantum systems by embedded dynamical decoupling schemes

    Full text link
    A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one-and two-qubit interactions

    Foam-like compression behavior of fibrin networks

    Get PDF
    The rheological properties of fibrin networks have been of long-standing interest. As such there is a wealth of studies of their shear and tensile responses, but their compressive behavior remains unexplored. Here, by characterization of the network structure with synchronous measurement of the fibrin storage and loss moduli at increasing degrees of compression, we show that the compressive behavior of fibrin networks is similar to that of cellular solids. A non-linear stress-strain response of fibrin consists of three regimes: 1) an initial linear regime, in which most fibers are straight, 2) a plateau regime, in which more and more fibers buckle and collapse, and 3) a markedly non-linear regime, in which network densification occurs {{by bending of buckled fibers}} and inter-fiber contacts. Importantly, the spatially non-uniform network deformation included formation of a moving "compression front" along the axis of strain, which segregated the fibrin network into compartments with different fiber densities and structure. The Young's modulus of the linear phase depends quadratically on the fibrin volume fraction while that in the densified phase depends cubically on it. The viscoelastic plateau regime corresponds to a mixture of these two phases in which the fractions of the two phases change during compression. We model this regime using a continuum theory of phase transitions and analytically predict the storage and loss moduli which are in good agreement with the experimental data. Our work shows that fibrin networks are a member of a broad class of natural cellular materials which includes cancellous bone, wood and cork

    Quantum error correction of coherent errors by randomization

    Full text link
    A general error correction method is presented which is capable of correcting coherent errors originating from static residual inter-qubit couplings in a quantum computer. It is based on a randomization of static imperfections in a many-qubit system by the repeated application of Pauli operators which change the computational basis. This Pauli-Random-Error-Correction (PAREC)-method eliminates coherent errors produced by static imperfections and increases significantly the maximum time over which realistic quantum computations can be performed reliably. Furthermore, it does not require redundancy so that all physical qubits involved can be used for logical purposes.Comment: revtex 4 pages, 3 fig

    IgG anti-apolipoprotein A-1 antibodies in patients with systemic lupus erythematosus are associated with disease activity and corticosteroid therapy: an observational study.

    Get PDF
    IgG anti-apolipoprotein A-1 (IgG anti-apoA-1) antibodies are present in patients with systemic lupus erythematosus (SLE) and may link inflammatory disease activity and the increased risk of developing atherosclerosis and cardiovascular disease (CVD) in these patients. We carried out a rigorous analysis of the associations between IgG anti-apoA-1 levels and disease activity, drug therapy, serology, damage, mortality and CVD events in a large British SLE cohort

    Excitation of weakly bound Rydberg electrons by half-cycle pulses

    Full text link
    The interaction of a weakly bound Rydberg electron with an electromagnetic half-cycle pulse (HCP) is described with the help of a multidimensional semiclassical treatment. This approach relates the quantum evolution of the electron to its underlying classical dynamics. The method is nonperturbative and is valid for arbitrary spatial and temporal shapes of the applied HCP. On the basis of this approach angle- and energy-resolved spectra resulting from the ionization of Rydberg atoms by HCPs are analyzed. The different types of spectra obtainable in the sudden-impact approximation are characterized in terms of the appearing semiclassical scattering phenomena. Typical modifications of the spectra originating from finite pulse effects are discussed.Comment: Submitted to Phys. Rev.

    Peakons, R-Matrix and Toda-Lattice

    Full text link
    The integrability of a family of hamiltonian systems, describing in a particular case the motionof N ``peakons" (special solutions of the so-called Camassa-Holm equation) is established in the framework of the rr-matrix approach, starting from its Lax representation. In the general case, the rr-matrix is a dynamical one and has an interesting though complicated structure. However, for a particular choice of the relevant parameters in the hamiltonian (the one corresponding to the pure ``peakons" case), the rr-matrix becomes essentially constant, and reduces to the one pertaining to the finite (non-periodic) Toda lattice. Intriguing consequences of such property are discussed and an integrable time discretisation is derived.Comment: 12 plain tex page
    • …
    corecore