The interaction of a weakly bound Rydberg electron with an electromagnetic
half-cycle pulse (HCP) is described with the help of a multidimensional
semiclassical treatment. This approach relates the quantum evolution of the
electron to its underlying classical dynamics. The method is nonperturbative
and is valid for arbitrary spatial and temporal shapes of the applied HCP. On
the basis of this approach angle- and energy-resolved spectra resulting from
the ionization of Rydberg atoms by HCPs are analyzed. The different types of
spectra obtainable in the sudden-impact approximation are characterized in
terms of the appearing semiclassical scattering phenomena. Typical
modifications of the spectra originating from finite pulse effects are
discussed.Comment: Submitted to Phys. Rev.