2,423 research outputs found

    Effect of Gr Contents on Wear Properties of Al2024/MgO/Al2O3/Gr Hybrid Composites

    Get PDF
    In the present study, hybrid metal matrix composites, Al2024/10Al2O3, Al2024/10Al2O3/3MgO, Al2024/10Al2O3/6MgO, Al2024/10Al2O3/3MgO/1.5 Gr, Al2024/10Al2O3/3MgO/3Gr, and reinforcement samples (AA 2024) produced with powder metallurgy process. AA 2024 and reinforcement powders were determined mixture rations and separately mixed during 30 minutes in a three-dimensional Turbula mixer. The mixed compositions were pressed at 300 MPa and sintered at 550°C during 1 h. After that, three materials were extruded at the same temperature. Experimental results show that hybrid metal matrix composites (HMMCs) a better wear resistance than the reinforcement samples because of higher hardness. Gr behave as a lubricant during wear process. The wear resistance of HMMCs can be optimized with controlling of the reinforcement content and type. © 2018 The Authors

    Effect of Hygroscopicity of the Metal Salts on the Formation and Air Stability of Lyotropic Liquid Crystalline Mesophases in Hydrated Salt-Surfactant Systems

    Get PDF
    Cataloged from PDF version of article.It is known that alkali, transition metal and lanthanide salts can form lyotropic liquid crystalline (LLC) mesophases with non-ionic surfactants (such as CiH2i+1(OCH2CH2)(j)OH, denoted as CiEj). Here we combine several salt systems and show that the percent deliquescence relative humidity (%DRH) value of a salt is the determining parameter in the formation and stability of the mesophases and that the other parameters are secondary and less significant. Accordingly, salts can be divided into 3 categories: Type I salts (such as LiCl, LiBr, LiI, LiNO3, LiClO4, CaCl2, Ca(NO3)(2), MgCl2, and some transition metal nitrates) have low %DRH and form stable salt-surfactant LLC mesophases in the presence of a small amount of water, type II salts (such as some sodium and potassium salts) that are moderately hygroscopic form disordered stable mesophases, and type III salts that have high %DRH values, do not form stable LLC mesophases and leach out salt crystals. To illustrate this effect, a large group of salts from alkali and alkaline earth metals were investigated using XRD, POM, FTIR, and Raman techniques. Among the different salts investigated in this study, the LiX (where X is Cl-, Br-, I-, NO3-, and ClO4-) and CaX2 (X is Cl-, and NO3-) salts were more prone to establish LLC mesophases because of their lower %DRH values. The phase behavior with respect to concentration, stability, and thermal behavior of Li(I) systems were investigated further. It is seen that the phase transitions among different anions in the Li(I) systems follow the Hofmeister series. (C) 2014 Elsevier Inc. All rights reserved

    A New, Highly Conductive, Lithium Salt/Nonionic Surfactant, Lyotropic Liquid-Crystalline Mesophase and Its Application

    Get PDF
    Cataloged from PDF version of article.Salty water! Lithium salts (LiCl, LiNO3, and LiClO4) at very high concentrations in water form lyotropic liquid crystalline (LLC) mesophases with a nonionic surfactant (10-lauryl ether) and display high ionic conductivities (10−2–10−4 S cm−1) over a broad temperature range (−10 to 80 °C) with excellent behavior as gel electrolytes in electrochemical applications

    Origin of Lyotropic Liquid Crystalline Mesophase Formation and Liquid Crystalline to Mesostructured Solid Transformation in the Metal Nitrate Salt-Surfactant Systems

    Get PDF
    Cataloged from PDF version of article.The zinc nitrate salt acts as a solvent in the ZnX-C(12)EO(10) (ZnX is [Zn(H(2)O)(6)](NO(3))(2) and C(12)EO(10) is C(12)H(25)(OCH(2)CH(2))(10)OH) lyotropic liquid crystalline (LLC) mesophase with a drastic dropping on the melting point of ZnX. The salt surfactant LLC mesophase is stable down to -52 degrees C and undergoes a phase change into a solid mesostructured salt upon cooling below -52 degrees C; no phase separation is observed down to -190 degrees C. The ZnX-C(12)EO(10) mesophase displays a usual phase behavior with an increasing concentration of the solvent (ZnX) in the media with an order of bicontinuous cubic(V(1))-2D hexagonal(H(1)) - a mixture of 2D hexagonal and micelle cubic(H(1) + I)-micelle cubic(I)-micelle(L(1)) phases. The phase behaviors, specifically at low temperatures, and the first phase diagram of the ZnX-C(12)EO(10) system was investigated using polarized optical microscopy (POM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and Raman techniques and conductivity measurements

    Assembly of Molten Transition Metal Salt-Surfactant in a Confined Space for the Synthesis of Mesoporous Metal Oxide-Rich Metal Oxide-Silica Thin Films

    Get PDF
    Cataloged from PDF version of article.ABSTRACT: Uniform and homogeneous coating of mesoporous materials with an active (catalytically, photonic, electrical) nanostructure can be very useful for a number of applications. Understanding chemical reactions in a confined space is important in order to design new advanced materials. In this work, we demonstrate that an extensive amount (as high as 53 mol percent) of transition metal salts can be confined between silica walls and two surfactant domains (cetyltrimethylammonium bromide, CTAB, and lauryl ether, C12H25(OCH2CH2)10OH, C12EO10) as molten salts and then converted into sponge-like mesoporous silica metal oxides by thermal annealing. This investigation has been carried out using two different salts, namely, zinc nitrate hexahydrate, [Zn(H2O)6](NO3)2, and cadmium nitrate tetrahydrate, [Cd(H2O)4](NO3)2, in a broad range of salt concentrations. The ZnO (or CdO) layers are as thin as about ∼1.6 nm and are homogenously coated as crystalline nano-islands over the silica pore walls

    The effect of cationic surfactant and some organic/inorganic additives on the morphology of mesostructured silica templated by pluronics

    Get PDF
    Cataloged from PDF version of article.Tri-block copolymers (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), represented as EOxPOyEOx), pluronics (F127=EO106PO70EO106, P65=EO20PO30EO20, P85=EO27PO39EO27, P103= EO17PO55EO17, and P123 = EO20PO70EO20) and cationic surfactants (cethyltrimethylammonium bromide (CTAB)), two surfactant systems, form complex micelles that self-assemble into mesostructured particles with distinct morphology depending on the pluronic type, the concentration of the cationic surfactant and the organic-inorganic ingredients in a siliceous reaction media under acidic conditions. The CTAB-P65 and CTAB-P85 systems form spheres, CTAB-P103 and CTAB-P123 systems form wormlike particles, and CTAB-F127 system form single crystals of mesostructured silica particles under very similar conditions. However addition of various salts (such as KCI and NaNO3) into a CTAB-P103 or CTAB-P123 solution system and cyclohexane and KCI into a CTAB-P85 solution system produces the mesostructured silica spheres and wormlike particles, respectively. By controlling the hydrophilic-hydrophobic character of the pluronics, core-corona interface, by means of additives, such as small organic molecules or salts, one could obtain the desired morphology that is dictated by the shape of the micelles of the pluronic-cationic surfactant complex. The effects of the additives and the formation mechanism of those morphologies have been discussed using spectroscopy (FT-IR and Raman), diffraction (XRD) and microscopy (POM and SEM) data. (c) 2008 Elsevier Inc. All rights reserved

    Investigation of individual factors impacting the effectiveness of requirements inspections: a replicated experiment

    Get PDF
    Abstract This paper presents a replication of an empirical study regarding the impact of individual factors on the effectiveness of requirements inspections. Experimental replications are important for verifying results and investigating the generality of empirical studies. We utilized the lab package and procedures from the original study, with some changes and additions, to conduct the replication with 69 professional developers in three different companies in Turkey. In general the results of the replication were consistent with those of the original study. The main result from the original study, which is supported in the replication, was that inspectors whose degree is in a field related to software engineering are less effective during a requirements inspection than inspectors whose degrees are in other fields. In addition, we found that Company, Experience, and English Proficiency impacted inspection effectiveness

    The role of charged surfactants in the thermal and structural properties of lyotropic liquid crystalline mesophases of [Zn(H2O)6](NO3)2-CnEOm-H2O

    Get PDF
    The mixtures of [Zn(H2O)6](NO3)2 salt, 10-lauryl ether (C12H25(OCH2CH2)10OH, represented as C12EO10), a charged surfactant (cetyltrimethylammonium bromide, C16H33N(CH3)3Br, represented as CTAB or sodium dodecylsulfate, C12H25OSO3Na, SDS) and water form lyotropic liquid crystalline mesophases (LLCM). This assembly accommodates up to 8.0 Zn(II) ions (corresponds to about 80% w/w salt/(salt + C12EO10)) for each C12EO10 in the presence of a 1.0 CTAB (or 0.5 SDS) and 3.5 H2O in its LC phase. The salt concentration can be increased by increasing charged surfactant concentration of the media. Addition of charged surfactant to the [Zn(H2O)6](NO3)2-C12EO10 mesophase not only increases the salt content, it can also increase the water content of the media. The charged surfactant-C12EO10 (hydrophobic tail groups) and the surfactant (head groups)-salt ion (ion-pair, hydrogen-bonding) interactions stabilize the mesophases at such salt high and water concentrations. The presence of both Br- and NO3- ions influences the thermal and structural properties of the [Zn(H2O)6](NO3)2-C12EO10-CTAB(or SDS)-H2O LLCM, which have been investigated using XRD, POM (with a hot stage), FT-IR and Raman techniques. © 2009 Elsevier Inc. All rights reserved
    corecore