47 research outputs found

    Comparing analytical methods to detect SARS-CoV-2 in wastewater

    Get PDF
    Wastewater based epidemiology (WBE) has emerged as a reliable strategy to assess the coronavirus disease 2019 (COVID-19) pandemic. Recent publications suggest that SARS-CoV-2 detection in wastewater is technically feasible; however, many different protocols are available and most of the methods applied have not been properly validated. To this end, different procedures to concentrate and extract inactivated SARS-CoV-2 and surrogates were initially evaluated. Urban wastewater seeded with gamma-irradiated SARS-CoV-2, porcine epidemic diarrhea virus (PEDV), and mengovirus (MgV) was used to test the concentration efficiency of an aluminum-based adsorption-precipitation method and a polyethylene glycol (PEG) precipitation protocol. Moreover, two different RNA extraction methods were compared in this study: a commercial manual spin column centrifugation kit and an automated protocol based on magnetic silica beads. Overall, the evaluated concentration methods did not impact the recovery of gamma-irradiated SARS-CoV-2 nor MgV, while extraction methods showed significant differences for PEDV. Mean recovery rates of 42.9 ± 9.5%, 27.5 ± 14.3% and 9.0 ± 2.2% were obtained for gamma-irradiated SARS-CoV-2, PEDV and MgV, respectively. Limits of detection (LoD95%) for five genomic SARS-CoV-2 targets (N1, N2, gene E, IP2 and IP4) ranged from 1.56 log genome equivalents (ge)/mL (N1) to 2.22 log ge/mL (IP4) when automated system was used; while values ranging between 2.08 (N1) and 2.34 (E) log ge/mL were observed when using column-based extraction method. Different targets were also evaluated in naturally contaminated wastewater samples with 91.2%, 85.3%, 70.6%, 79.4% and 73.5% positivity, for N1, N2, E, IP2 and IP4, respectively. Our benchmarked comparison study suggests that the aluminum precipitation method coupled with the automated nucleic extraction represents a method of acceptable sensitivity to provide readily results of interest for SARS-CoV-2 WBE surveillance.The study was funded by grants from CSIC (202070E101), Generalitat Valenciana (Covid_19-SCI), MICINN co-founded by AEI/FEDER, UE (AGL2017-82909), and MICINN/AEI (PID2019-105509RJ-I00). EC-F is recipient of a predoctoral contract from the MICINN, Call 2018. WR is holder of the APOSTD/2018/150 postdoctoral contract from Generalitat Valenciana.Peer reviewe

    Virus entéricos humanos en alimentos: detección y métodos de inactivación

    Get PDF
    Los principales patógenos víricos que podemos ad­quirir ingiriendo alimentos contaminados son los norovirus, el virus de la hepatitis A y el virus de la hepatitis E que se propagan principalmente a través de la vía fecal oral. En los últimos años, la incidencia de brotes de transmisión alimentaria causados por estos patógenos ha experimentado un aumento considerable, en parte debido al comercio globalizado y a los cambios en los hábitos de consumo. Las matrices alimentarias que mayor riesgo representan para el consumidor son los moluscos bivalvos, ve­getales de IV gama, frutas tipo baya y platos listos para comer. Actualmente las técnicas moleculares son las más habituales para la detección de estos patógenos en alimentos, aunque toda­vía existen dudas acerca del significado de la presencia de estos genomas víricos en términos de seguridad alimentaria. La infec­tividad de estos patógenos en alimentos viene también determi­nada por su elevada persistencia ambiental y por su resistencia a los tratamientos aplicados para la conservación de los alimentos

    Spatial and temporal distribution of SARS-CoV-2 diversity circulating in wastewater.

    Get PDF
    Wastewater-based epidemiology (WBE) has proven to be an effective tool for epidemiological surveillance of SARS-CoV-2 during the current COVID-19 pandemic. Furthermore, combining WBE together with high-throughput sequencing techniques can be useful for the analysis of SARS-CoV-2 viral diversity present in a given sample. The present study focuses on the genomic analysis of SARS-CoV-2 in 76 sewage samples collected during the three epidemiological waves that occurred in Spain from 14 wastewater treatment plants distributed throughout the country. The results obtained demonstrate that the metagenomic analysis of SARS-CoV-2 in wastewater allows the detection of mutations that define the B.1.1.7 lineage and the ability of the technique to anticipate the detection of certain mutations before they are detected in clinical samples. The study proves the usefulness of sewage sequencing to track Variants of Concern that can complement clinical testing to help in decision-making and in the analysis of the evolution of the pandemic

    Platinum chloride-based viability RT-qPCR for SARS-CoV-2 detection in complex samples.

    Get PDF
    Isolation, contact tracing and restrictions on social movement are being globally implemented to prevent and control onward spread of SARS-CoV-2, even though the infection risk modelled on RNA detection by RT-qPCR remains biased as viral shedding and infectivity are not discerned. Thus, we aimed to develop a rapid viability RT-qPCR procedure to infer SARS-CoV-2 infectivity in clinical specimens and environmental samples. We screened monoazide dyes and platinum compounds as viability molecular markers on five SARS-CoV-2 RNA targets. A platinum chloride-based viability RT-qPCR was then optimized using genomic RNA, and inactivated SARS-CoV-2 particles inoculated in buffer, stool, and urine. Our results were finally validated in nasopharyngeal swabs from persons who tested positive for COVID-19 and in wastewater samples positive for SARS-CoV-2 RNA. We established a rapid viability RT-qPCR that selectively detects potentially infectious SARS-CoV-2 particles in complex matrices. In particular, the confirmed positivity of nasopharyngeal swabs following the viability procedure suggests their potential infectivity, while the complete prevention of amplification in wastewater indicated either non-infectious particles or free RNA. The viability RT-qPCR approach provides a more accurate ascertainment of the infectious viruses detection and it may complement analyses to foster risk-based investigations for the prevention and control of new or re-occurring outbreaks with a broad application spectrum

    Evaluation of two different concentration methods for surveillance of human viruses in sewage and their effects on SARS-CoV-2 sequencing

    Get PDF
    During the current COVID-19 pandemic, wastewater-based epidemiology (WBE) emerged as a reliable strategy both as a surveillance method and a way to provide an overview of the SARS-CoV-2 variants circulating among the population. Our objective was to compare two different concentration methods, a well-established aluminum-based procedure (AP) and the commercially available Maxwell® RSC Enviro Wastewater TNA Kit (TNA) for human enteric virus, viral indicators and SARS-CoV-2 surveillance. Additionally, both concentration methods were analyzed for their impact on viral infectivity, and nucleic acids obtained from each method were also evaluated by massive sequencing for SARS-CoV-2. The percentage of SARS-CoV-2 positive samples using the AP method accounted to 100 %, 83.3 %, and 33.3 % depending on the target region while 100 % positivity for these same three target regions was reported using the TNA procedure. The concentrations of norovirus GI, norovirus GII and HEV using the TNA method were significantly greater than for the AP method while no differences were reported for rotavirus, astrovirus, crAssphage and PMMoV. Furthermore, TNA kit in combination with the Artic v4 primer scheme yields the best SARS-CoV-2 sequencing results. Regarding impact on infectivity, the concentration method used by the TNA kit showed near-complete lysis of viruses. Our results suggest that although the performance of the TNA kit was higher than that of the aluminum procedure, both methods are suitable for the analysis of enveloped and non-enveloped viruses in wastewater by molecular methods

    Revisiting the Taxonomy of the Genus Arcobacter: Getting Order From the Chaos

    Get PDF
    Since the description of the genus Arcobacter in 1991, a total of 27 species have been described, although some species have shown 16S rRNA similarities below 95%, which is the cut-off that usually separates species that belong to different genera. The objective of the present study was to reassess the taxonomy of the genus Arcobacter using information derived from the core genome (286 genes), a Multilocus Sequence Analysis (MLSA) with 13 housekeeping genes, as well as different genomic indexes like Average Nucleotide Identity (ANI), in silico DNA–DNA hybridization (isDDH), Average Amino-acid Identity (AAI), Percentage of Conserved Proteins (POCPs), and Relative Synonymous Codon Usage (RSCU). The study included a total of 39 strains that represent all the 27 species included in the genus Arcobacter together with 13 strains that are potentially new species, and the analysis of 57 genomes. The different phylogenetic analyses showed that the Arcobacter species grouped into four clusters. In addition, A. lekithochrous and the candidatus species ‘A. aquaticus’ appeared, as did A. nitrofigilis, the type species of the genus, in separate branches. Furthermore, the genomic indices ANI and isDDH not only confirmed that all the species were well-defined, but also the coherence of the clusters. The AAI and POCP values showed intra-cluster ranges above the respective cut-off values of 60% and 50% described for species belonging to the same genus. Phenotypic analysis showed that certain test combinations could allow the differentiation of the four clusters and the three orphan species established by the phylogenetic and genomic analyses. The origin of the strains showed that each of the clusters embraced species recovered from a common or related environment. The results obtained enable the division of the current genus Arcobacter in at least seven different genera, for which the names Arcobacter, Aliiarcobacter gen. nov., Pseudoarcobacter gen. nov., Haloarcobacter gen. nov., Malacobacter gen. nov., Poseidonibacter gen. nov., and Candidate ‘Arcomarinus’ gen. nov. are proposedThis work was supported in part by Grants JPIW2013-69095-C03-03 from the Ministerio de Economía y Competitividad (MINECO), AQUAVALENS of the Seventh Framework Program (FP7/2007-2013) grant agreement 311846 from the European Union and AGL2013-42628-R and AGL2016-77539-R (AEI/FEDER UE) from the Agencia Estatal de Investigación (Spain)S

    Antiviral capacity of sanitizers against infectious viruses in process water from the produce industry under batch and continuous conditions

    Get PDF
    The presence of human enteric viruses in produce has extensively been reported. However, the significance of the quality of process water (PW) used by the produce industry and the viral inactivation capacity of water disinfection agents used to maintain the microbiological quality of PW has received limited attention. This study evaluates the antiviral disinfection efficacy of chlorine, chlorine dioxide (ClO2) and peracetic acid (PAA) at recommended operational limits in PW using hepatitis A virus (HAV), the cultivable norovirus surrogate, murine norovirus (MNV-1), and MS2 coliphages. Defined commodity representative crops (baby leaves, bell peppers, and the vegetable mix of tomatoes, cucumbers, peppers, and onions) associated with specific water-based processes were studied. Two systems classified as either batch or continuous system were used. The continuous system allows the continuously entrance of sanitizer solution and organic matter added to the washing tank to simulate the conditions of an industry wash tank. Batch scale experiments showed that 20 mg/L chlorine and 3 mg/L chlorine dioxide completely inactivated MNV-1 and MS2 (mean of 5 log) after 1 min contact time regardless of the PW type. However, the infectivity of HAV was reduced only by less than 2 log after 1 min for chlorine and chlorine dioxide and the complete inactivation was not observed even after 10 min. On the contrary, residual viral infectivity/viability of HAV, MNV-1 and MS2 was observed for PAA in the three types of PW. The inactivation kinetic models for MS2 coliphages were developed based on the data obtained under the continuous system comparing the three types of PW. Chlorine (5 mg/L) and chlorine dioxide (2-3 mg/L) avoided the accumulation of MS2 below the detection limit while PAA (80 mg/L) was unable to prevent it independently of the type of PW. In summary, in the washing operation, it is a key objective to reach virus inactivation through the selection of the most effective sanitizer by guaranteeing that sufficient concentration and contact times prevent the risk of viral cross-contamination

    Epidemiological Surveillance of Norovirus and Rotavirus in Sewage (2016-2017) in Valencia (Spain)

    Get PDF
    The aim of the present study was to perform the molecular epidemiology of rotaviruses and noroviruses detected in sewage samples from a large wastewater facility from the city of Valencia, Spain. A total of 46 sewage samples were collected over a one-year period (September 2016 to September 2017). Norovirus and rotavirus were detected and quantified by RT-qPCR, genotyped by semi-nested RT-PCR and further characterized by sequencing and phylogenetic analyses. Noroviruses and rotaviruses were widely distributed in sewage samples (69.6% for norovirus GI, 76.0% norovirus GII, and 71.7% rotaviruses) and viral loads varied from 4.33 to 5.75 log PCRU/L for norovirus GI, 4.69 to 6.95 log PCRU/L for norovirus GII, and 4.08 to 6.92 log PCRU/L for rotavirus. Overall, 87.5% (28/32) of GI noroviruses could not be genotyped, 6.25% (2/32) of the samples contained GI.2 genotype, and another 6.25% (2/32) were positive for GI.4 genotype. The most common genotype of GII noroviruses was GII.2 (40%, 14/35), followed by GII.6 (8.6%, 3/35) and GII.17 (5.7%, 2/35) while the remaining GII strains could not be typed (45.7%, 16/35). Rotavirus VP4 genotype P[8] was the only one found in 19 out of 33 rotavirus-positive samples (57.7%). G2 was the most prevalent rotavirus VP7 genotype (15.2%, 5/33) followed by G3, G9, and G12, with two positive samples for each genotype (6.1%, 2/33). In one sample both G1 and G2 genotypes were detected simultaneously (3%). The results presented here show that the surveillance of noroviruses and rotaviruses in sewage is useful for the study of their transmission in the population and their molecular epidemiology
    corecore