2,310 research outputs found
Quantum Nature of the Proton in Water-Hydroxyl Overlayers on Metal Surfaces
Using ab initio path-integral molecular dynamics, we show that water-hydroxyl overlayers on transition metal surfaces exhibit surprisingly pronounced quantum nuclear effects. The metal substrates serve to reduce the classical proton transfer barriers within the overlayers and, in analogy to ice under high pressure, to shorten the corresponding intermolecular hydrogen bonds. Depending on the substrate and the intermolecular separations it imposes, the traditional distinction between covalent and hydrogen bonds is lost partially [e.g., on Pt(111) and Ru(0001)] or almost entirely [e.g., on Ni(111)]. We suggest that these systems provide an excellent platform on which to systematically explore the magnitude of quantum nuclear effects in hydrogen bonds
Direct CP violation in neutral kaon decays
The final result is presented of the NA48 Experiment performed at CERN SPS
neutral kaon beams on the direct CP violation parameter Re(epsilon'/epsilon),
as maesured from the decay rates of neutral kaons into two pions. The data
collected in years 1997-2001 yield the evidence for direct CP violation with
Re(epsilon'/epsilon)=(14.7+-2.2)10^-4. Description of expermental method and
systematics, comparison with world data and some discussion of implications for
theory are given.Comment: 5 pp., 3 figs, presented on behalf of NA48 Collaboration at PASCOS
2003 Conference, Mumbai, India, 2-8 Jan 2003, to appear in Praman
Berry's phase in noncommutative spaces
We introduce the perturbative aspects of noncommutative quantum mechanics.
Then we study the Berry's phase in the framework of noncommutative quantum
mechanics. The results show deviations from the usual quantum mechanics which
depend on the parameter of space/space noncommtativity.Comment: 7 pages, no figur
Polymers near Metal Surfaces: Selective Adsorption and Global Conformations
We study the properties of a polycarbonate melt near a nickel surface as a
model system for the interaction of polymers with metal surfaces by employing a
multiscale modeling approach. For bulk properties a suitably coarse grained
bead spring model is simulated by molecular dynamics (MD) methods with model
parameters directly derived from quantum chemical calculations. The surface
interactions are parameterized and incorporated by extensive quantum mechanical
density functional calculations using the Car-Parrinello method. We find strong
chemisorption of chain ends, resulting in significant modifications of the melt
composition when compared to an inert wall.Comment: 8 pages, 3 figures (2 color), 1 tabl
The Noncommutative Anandan's Quantum Phase
In this work we study the noncommutative nonrelativistic quantum dynamics of
a neutral particle, that possesses permanent magnetic and electric dipole
momenta, in the presence of an electric and magnetic fields. We use the
Foldy-Wouthuysen transformation of the Dirac spinor with a non-minimal coupling
to obtain the nonrelativistic limit. In this limit, we will study the
noncommutative quantum dynamics and obtain the noncommutative Anandan's
geometric phase. We analyze the situation where magnetic dipole moment of the
particle is zero and we obtain the noncommutative version of the
He-McKellar-Wilkens effect. We demonstrate that this phase in the
noncommutative case is a geometric dispersive phase. We also investigate this
geometric phase considering the noncommutativity in the phase space and the
Anandan's phase is obtained.Comment: 15 pages, revtex4, version to appear in Physical Review
Heisenberg quantization for the systems of identical particles and the Pauli exclusion principle in noncommutative spaces
We study the Heisenberg quantization for the systems of identical particles
in noncommtative spaces. We get fermions and bosons as a special cases of our
argument, in the same way as commutative case and therefore we conclude that
the Pauli exclusion principle is also valid in noncommutative spaces.Comment: 8 pages, 1 figur
Noncommutative fluid dynamics in the Snyder space-time
In this paper, we construct for the first time the non-commutative fluid with
the deformed Poincare invariance. To this end, the realization formalism of the
noncommutative spaces is employed and the results are particularized to the
Snyder space. The non-commutative fluid generalizes the fluid model in the
action functional formulation to the noncommutative space. The fluid equations
of motion and the conserved energy-momentum tensor are obtained.Comment: 12 pages. Version published by Phys. Rev.
An evaluation of total starch and starch gelatinization methodologies in pelleted animal feed
Citation: Zhu, L., Jones, C., Guo, Q., Lewis, L., Stark, C. R., & Alavi, S. (2016). An evaluation of total starch and starch gelatinization methodologies in pelleted animal feed. Journal of Animal Science, 94(4), 1501-1507. doi:10.2527/jas2015-9822The quantification of total starch content (TS) or degree of starch gelatinization (DG) in animal feed is always challenging because of the potential interference from other ingredients. In this study, the differences in TS or DG measurement in pelleted swine feed due to variations in analytical methodology were quantified. Pelleted swine feed was used to create 6 different diets manufactured with various processing conditions in a 2 x 3 factorial design (2 conditioning temperatures, 77 or 88 degrees C, and 3 conditioning retention times, 15, 30, or 60 s). Samples at each processing stage (cold mash, hot mash, hot pelletized feed, and final cooled pelletized feed) were collected for each of the 6 treatments and analyzed for TS and DG. Two different methodologies were evaluated for TS determination (the AOAC International method 996.11 vs. the modified glucoamylase method) and DG determination (the modified glucoamylase method vs. differential scanning calorimetry [DSC]). For TS determination, the AOAC International method 996.11 measured lower TS values in cold pellets compared with the modified glucoamylase method. The AOAC International method resulted in lower TS in cold mash than cooled pelletized feed, whereas the modified glucoamylase method showed no significant differences in TS content before or after pelleting. For DG, the modified glucoamylase method demonstrated increased DG with each processing step. Furthermore, increasing the conditioning temperature and time resulted in a greater DG when evaluated by the modified glucoamylase method. However, results demonstrated that DSC is not suitable as a quantitative tool for determining DG in multicomponent animal feeds due to interferences from nonstarch transformations, such as protein denaturation
IT-ENABLED KNOWLEDGE MANAGEMENT IN HEALTHCARE DELIVERY: THE CASE OF EMERGENCY CARE
IT is viewed as integral to achieving substantial quality and efficiency improvements in U.S. healthcare delivery and management. A key idea behind these suggestions is the use of IT to support knowledge management to enhance and facilitate evidence-based clinical decisionmaking. Yet, it is not clear to what extent IT-enabled knowledge management systems will be effective for physicians who make complex clinical decisions under time pressure and high degree of uncertainty. To address this gap, we are conducting a field study to examine the impact of ITenabled knowledge management systems in an emergency department at a major university hospital in the Southeast region of the US. The preliminary results of our analyses show that the use of IT-enabled knowledge application tools indeed influence the healthcare professional’s clinical decision-making behaviors, which in turn influence the outcome of patient care
Low-temperature Thermodynamic Study of the Empty Clathrate Hydrates
UID/QUI/50006/2019authorsversionpublishe
- …