257 research outputs found

    First-principles calculations of the self-trapped exciton in crystalline NaCl

    Full text link
    The atomic and electronic structure of the lowest triplet state of the off-center (C2v symmetry) self-trapped exciton (STE) in crystalline NaCl is calculated using the local-spin-density (LSDA) approximation. In addition, the Franck-Condon broadening of the luminescence peak and the a1g -> b3u absorption peak are calculated and compared to experiment. LSDA accurately predicts transition energies if the initial and final states are both localized or delocalized, but 1 eV discrepancies with experiment occur if one state is localized and the other is delocalized.Comment: 4 pages with 4 embeddded figure

    Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

    Get PDF
    On 2017 August 17, Swope Supernova Survey 2017a (SSS17a) was discovered as the optical counterpart of the binary neutron star gravitational wave event GW170817. We report time-series spectroscopy of SSS17a from 11.75 hours until 8.5 days after merger. Over the first hour of observations the ejecta rapidly expanded and cooled. Applying blackbody fits to the spectra, we measure the photosphere cooling from 11,000−900+340011,000^{+3400}_{-900} K to 9300−300+3009300^{+300}_{-300} K, and determine a photospheric velocity of roughly 30% of the speed of light. The spectra of SSS17a begin displaying broad features after 1.46 days, and evolve qualitatively over each subsequent day, with distinct blue (early-time) and red (late-time) components. The late-time component is consistent with theoretical models of r-process-enriched neutron star ejecta, whereas the blue component requires high velocity, lanthanide-free material.Comment: 33 pages, 5 figures, 2 tables, Accepted to Scienc

    Black Holes in the Early Universe

    Full text link
    The existence of massive black holes was postulated in the sixties, when the first quasars were discovered. In the late nineties their reality was proven beyond doubt, in the Milky way and a handful nearby galaxies. Since then, enormous theoretical and observational efforts have been made to understand the astrophysics of massive black holes. We have discovered that some of the most massive black holes known, weighing billions of solar masses, powered luminous quasars within the first billion years of the Universe. The first massive black holes must therefore have formed around the time the first stars and galaxies formed. Dynamical evidence also indicates that black holes with masses of millions to billions of solar masses ordinarily dwell in the centers of today's galaxies. Massive black holes populate galaxy centers today, and shone as quasars in the past; the quiescent black holes that we detect now in nearby bulges are the dormant remnants of this fiery past. In this review we report on basic, but critical, questions regarding the cosmological significance of massive black holes. What physical mechanisms lead to the formation of the first massive black holes? How massive were the initial massive black hole seeds? When and where did they form? How is the growth of black holes linked to that of their host galaxy? Answers to most of these questions are work in progress, in the spirit of these Reports on Progress in Physics.Comment: Reports on Progress in Physics, in pres

    Multi-phonon Resonant Raman Scattering Predicted in LaMnO3 from the Franck-Condon Process via Self-Trapped Excitons

    Full text link
    Resonant behavior of the Raman process is predicted when the laser frequency is close to the orbital excitation energy of LaMnO3 at 2 eV. The incident photon creates a vibrationally excited self-trapped ``orbiton'' state from the orbitally-ordered Jahn-Teller (JT) ground state. Trapping occurs by local oxygen rearrangement. Then the Franck-Condon mechanism activates multiphonon Raman scattering. The amplitude of the nn-phonon process is first order in the electron-phonon coupling gg. The resonance occurs {\it via} a dipole forbidden dd to dd transition. We previously suggested that this transition (also seen in optical reflectivity) becomes allowed because of asymmetric oxygen fluctuations. Here we calculate the magnitude of the corresponding matrix element using local spin-density functional theory. This calculation agrees to better than a factor of two with our previous value extracted from experiment. This allows us to calculate the absolute value of the Raman tensor for multiphonon scattering. Observation of this effect would be a direct confirmation of the importance of the JT electron-phonon term and the presence of self-trapped orbital excitons, or ``orbitons''.Comment: 8 pages and 3 embedded figures. The earlier short version is now replaced by a more complete paper with a slightly different title. This version includes a caculation by density-functional theory of the dipole matrix element for exciting the self-trapped orbital exciton which activates the multiphonon Raman signal

    Bone turnover markers are correlated with total skeletal uptake of 99mTc-methylene diphosphonate (99mTc-MDP)

    Get PDF
    ABSTRACT: BACKGROUND: Skeletal uptake of 99mTc labelled methylene diphosphonate (99mTc-MDP) is used for producing images of pathological bone uptake due to its incorporation to the sites of active bone turnover. This study was done to validate bone turnover markers using total skeletal uptake (TSU) of 99mTc-MDP. METHODS: 22 postmenopausal women (52-80 years) volunteered to participate. Scintigraphy was performed by injecting 520 MBq of 99mTc-MDP and taking whole body images after 3 minutes, and 5 hours. TSU was calculated from these two images by taking into account the urinary loss and soft tissue uptake. Bone turnover markers used were bone specific alkaline phosphatase (S-Bone ALP), three different assays for serum osteocalcin (OC), tartrate resistant acid phosphatase 5b (S-TRACP5b), serum C-terminal cross-linked telopeptides of type I collagen (S-CTX-I) and three assays for urinary osteocalcin (U-OC). RESULTS: The median TSU of 99mTc-MDP was 23% of the administered activity. All bone turnover markers were significantly correlated with TSU with r-values from 0.52 (p = 0.013) to 0.90 (p < 0.001). The two resorption markers had numerically higher correlations (S-TRACP5b r = 0.90, S-CTX-I r = 0.80) than the formation markers (S-Total OC r = 0.72, S-Bone ALP r = 0.66), but the difference was not statistically significant. TSU did not correlate with age, weight, body mass index or bone mineral density. CONCLUSION: In conclusion, bone turnover markers are strongly correlated with total skeletal uptake of 99mTc-MDP. There were no significant differences in correlations for bone formation and resorption markers. This should be due to the coupling between formation and resorption

    Communication in the Third Dimension: Song Perch Height of Rivals Affects Singing Response in Nightingales

    Get PDF
    Many animals use long-range signals to compete over mates and resources. Optimal transmission can be achieved by choosing efficient signals, or by choosing adequate signalling perches and song posts. High signalling perches benefit sound transmission and reception, but may be more risky due to exposure to airborne predators. Perch height could thus reflect male quality, with individuals signalling at higher perches appearing as more threatening to rivals. Using playbacks on nightingales (Luscinia megarhynchos), we simulated rivals singing at the same height as residents, or singing three metres higher. Surprisingly, residents increased song output stronger, and, varying with future pairing success, overlapped more songs of the playback when rivals were singing at the same height than when they were singing higher. Other than expected, rivals singing at the same height may thus be experienced as more threatening than rivals singing at higher perches. Our study provides new evidence that territorial animals integrate information on signalling height and thus on vertical cues in their assessment of rivals

    Liver Enzymes: Interaction Analysis of Smoking with Alcohol Consumption or BMI, Comparing AST and ALT to γ-GT

    Get PDF
    A detrimental interaction between smoking and alcohol consumption with respect serum γ-glutamyltransferase (γ-GT) has recently been described. The underlying mechanisms remain unknown. The present work aimed to provide further insights by examining similar interactions pertaining to aspartate and alanine transaminase (AST, ALT), routine liver markers less prone to enzyme induction.<0.0001). The interactions all were in the same directions as for γ-GT, i.e. synergistic with alcohol and opposite with BMI.The patterns of interaction between smoking and alcohol consumption or BMI with respect to AST and ALT resembled those observed for γ-GT. This renders enzyme induction a less probable mechanism for these associations, whereas it might implicate exacerbated hepatocellular vulnerability and injury

    Global warming and Bergmann’s rule: do central European passerines adjust their body size to rising temperatures?

    Get PDF
    Recent climate change has caused diverse ecological responses in plants and animals. However, relatively little is known about homeothermic animals’ ability to adapt to changing temperature regimes through changes in body size, in accordance with Bergmann’s rule. We used fluctuations in mean annual temperatures in south-west Germany since 1972 in order to look for direct links between temperature and two aspects of body size: body mass and flight feather length. Data from regionally born juveniles of 12 passerine bird species were analysed. Body mass and feather length varied significantly among years in eight and nine species, respectively. Typically the inter-annual changes in morphology were complexly non-linear, as was inter-annual variation in temperature. For six (body mass) and seven species (feather length), these inter-annual fluctuations were significantly correlated with temperature fluctuations. However, negative correlations consistent with Bergmann’s rule were only found for five species, either for body mass or feather length. In several of the species for which body mass and feather length was significantly associated with temperature, morphological responses were better predicted by temperature data that were smoothed across multiple years than by the actual mean breeding season temperatures of the year of birth. This was found in five species for body mass and three species for feather length. These results suggest that changes in body size may not merely be the result of phenotypic plasticity but may hint at genetically based microevolutionary adaptations
    • …
    corecore