389 research outputs found

    Helioseismic analysis of the hydrogen partition function in the solar interior

    Full text link
    The difference in the adiabatic gradient gamma_1 between inverted solar data and solar models is analyzed. To obtain deeper insight into the issues of plasma physics, the so-called ``intrinsic'' difference in gamma_1 is extracted, that is, the difference due to the change in the equation of state alone. Our method uses reference models based on two equations of state currently used in solar modeling, the Mihalas-Hummer-Dappen (MHD) equation of state, and the OPAL equation of state (developed at Livermore). Solar oscillation frequencies from the SOI/MDI instrument on board the SOHO spacecraft during its first 144 days in operation are used. Our results confirm the existence of a subtle effect of the excited states in hydrogen that was previously studied only theoretically (Nayfonov & Dappen 1998). The effect stems from internal partition function of hydrogen, as used in the MHD equation of state. Although it is a pure-hydrogen effect, it takes place in somewhat deeper layers of the Sun, where more than 90% of hydrogen is ionized, and where the second ionization zone of helium is located. Therefore, the effect will have to be taken into account in reliable helioseismic determinations of the astrophysically relevant helium-abundance of the solar convection zone.Comment: 30 pages, 4 figures, 1 table. Revised version submitted to Ap

    Correlations in two-component log-gas systems

    Full text link
    A systematic study of the properties of particle and charge correlation functions in the two-dimensional Coulomb gas confined to a one-dimensional domain is undertaken. Two versions of this system are considered: one in which the positive and negative charges are constrained to alternate in sign along the line, and the other where there is no charge ordering constraint. Both systems undergo a zero-density Kosterlitz-Thouless type transition as the dimensionless coupling Γ:=q2/kT\Gamma := q^2 / kT is varied through Γ=2\Gamma = 2. In the charge ordered system we use a perturbation technique to establish an O(1/r4)O(1/r^4) decay of the two-body correlations in the high temperature limit. For Γ2+\Gamma \rightarrow 2^+, the low-fugacity expansion of the asymptotic charge-charge correlation can be resummed to all orders in the fugacity. The resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys. Shortened version of abstract belo

    Exact aymptotic expansions for the thermodynamics of hydrogen gas in the Saha regime

    Get PDF
    We consider the hydrogen quantum plasma in the Saha regime, where it almost reduces to a partially ionized atomic gas. We briefly review the construction of systematic expansions of thermodynamical functions beyond Saha theory, which describes an ideal mixture of ionized protons, ionized electrons and hydrogen atoms in their ground-state. Thanks to the existence of rigorous results, we first identify the simultaneous low-temperature and low-density limit in which Saha theory becomes asymptotically exact. Then, we argue that the screened cluster representation is well suited for calculating corrections, since that formalism accounts for all screening and recombination phenomena at work in a more tractable way than other many-body methods. We sketch the corresponding diagrammatical analysis, which leads to an exact asymptotic expansion for the equation of state. That scaled low-temperature expansion improves the analytical knowledge of the phase diagram. It also provides reliable numerical values over a rather wide range of temperatures and densities, as confirmed by comparisons to quantum Monte Carlo data.Comment: 10 page

    Variability of aerosol optical properties in the Western Mediterranean Basin

    Get PDF
    Aerosol light scattering, absorption and particulate matter (PM) concentrations were measured at Montseny, a regional background site in the Western Mediterranean Basin (WMB) which is part of the European Supersite for Atmospheric Aerosol Research (EUSAAR). Off line analyses of 24 h PM filters collected with Hi-Vol instruments were performed for the determination of the main chemical components of PM. Mean scattering and hemispheric backscattering coefficients (@ 635 nm) were 26.6±23.2 Mm<sup>−1</sup> and 4.3±2.7 Mm<sup>−1</sup>, respectively and the mean aerosol absorption coefficient (@ 637 nm) was 2.8±2.2 Mm<sup>−1</sup>. Mean values of Single Scattering Albedo (SSA) and Ångström exponent (<i>å</i>) (calculated from 450 nm to 635 nm) at MSY were 0.90±0.05 and 1.3±0.5 respectively. A clear relationship was observed between the PM<sub>1</sub>/PM<sub>10</sub> and PM<sub>2.5</sub>/PM<sub>10</sub> ratios as a function of the calculated Ångström exponents. Mass scattering cross sections (MSC) for fine mass and sulfate at 635 nm were 2.8±0.5 m<sup>2</sup> g<sup>−1</sup> and 11.8±2.2 m<sup>2</sup> g<sup>−1</sup>, respectively, while the mean aerosol absorption cross section (MAC) was 10.4±2.0 m<sup>2</sup> g<sup>−1</sup>. The variability in aerosol optical properties in the WMB were largely explained by the origin and ageing of air masses over the measurement site. The MAC values appear dependent of particles aging: similar to the expected absorption cross-section for fresh emissions under Atlantic Advection episodes and higher under aerosol pollution episodes. The analysis of the Ångström exponent as a function of the origin the air masses revealed that polluted winter anticyclonic conditions and summer recirculation scenarios typical of the WMB led to an increase of fine particles in the atmosphere (<i>å</i> = 1.5±0.1) while the aerosol optical properties under Atlantic Advection episodes and Saharan dust outbreaks were clearly dominated by coarser particles (<i>å</i> = 1.0±0.4). The sea breeze played an important role in transporting pollutants from the developed WMB coastlines towards inland rural areas, changing the optical properties of aerosols. Aerosol scattering and backscattering coefficients increased by around 40 % in the afternoon when the sea breeze was fully developed while the absorption coefficient increased by more than 100 % as a consequence of the increase in the equivalent black carbon concentration (EBC) observed at MSY under sea breeze circulation

    2005-2017 Ozone trends and potential benefits of local measures as deduced from air quality measurements in the north of the Barcelona metropolitan area

    Get PDF
    We analyzed 2005–2017 data sets on ozone (O3) concentrations in an area (the Vic Plain) frequently affected by the atmospheric plume northward transport of the Barcelona metropolitan area (BMA), the atmospheric basin of Spain recording the highest number of exceedances of the hourly O3 information threshold (180¿µg¿m-3). We aimed at evaluating the potential benefits of implementing local-BMA short-term measures to abate emissions of precursors. To this end, we analyzed in detail spatial and time variations of concentration of O3 and nitrogen oxides (NO and NO2, including OMI remote sensing data for the latter). Subsequently, a sensitivity analysis is done with the air quality (AQ) data to evaluate potential O3 reductions in the north of the BMA on Sundays compared with weekdays as a consequence of the reduction in regional emissions of precursors. The results showed a generalized decreasing trend for regional background O3 as well as the well-known increase in urban O3 and higher urban NO decreasing slopes compared with those of NO2. The most intensive O3 episodes in the Vic Plain are caused by (i) a relatively high regional background O3 (due to a mix of continental, hemispheric–tropospheric and stratospheric contributions); by (ii) intensive surface fumigation from mid-troposphere high O3 upper layers arising from the concatenation of the vertical recirculation of air masses; but also by (iii) an important O3 contribution from the northward transport/channeling of the pollution plume from the BMA. The high relevance of the local-daily O3 contribution during the most intense pollution episodes is clearly supported by the O3 (surface concentration) and NO2 (OMI data) data analysis. A maximum decrease potential (by applying short-term measures to abate emissions of O3 precursors) of 49¿µg¿O3¿m-3 (32¿%) of the average diurnal concentrations was determined. Structurally implemented measures, instead of episodically, could result in important additional O3 decreases because not only the local O3 coming from the BMA plume would be reduced, but also the recirculated O3 and thus the intensity of O3 fumigation in the plain. Therefore, it is highly probable that both structural and episodic measures to abate NOx and volatile organic compound (VOC) emissions in the BMA would result in evident reductions of O3 in the Vic PlainPeer ReviewedPostprint (author's final draft

    Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high-altitude site in the western Mediterranean Basin

    Get PDF
    Aerosol light scattering (&sigma;<sub>sp</sub>), backscattering (&sigma;<sub>bsp</sub>) and absorption (&sigma;<sub>ap</sub>) were measured at Montsec (MSC; 42°3' N, 0°44' E, 1570 m a.s.l.), a remote high-altitude site in the western Mediterranean Basin. Mean (±SD) &sigma;<sub>sp</sub>, &sigma;<sub>bsp</sub> and &sigma;<sub>ap</sub> were 18.9 ± 20.8, 2.6 ± 2.8 and 1.5 ± 1.4 Mm<sup>−1</sup>, respectively at 635 nm during the period under study (June 2011–June 2013). Mean values of single-scattering albedo (SSA, 635 nm), the scattering Ångström exponent (SAE, 450–635 nm), backscatter-to-scatter ratio (<i>B</i> / <i>S</i>, 635 nm), asymmetry parameter (<i>g</i>, 635 nm), black carbon mass absorption cross section (MAC, 637 nm) and PM<sub>2.5</sub> mass scattering cross section (MSCS, 635 nm) were 0.92 ± 0.03, 1.56 ± 0.88, 0.16 ± 0.09, 0.53 ± 0.16, 10.9 ± 3.5 m<sup>2</sup> g<sup>−1</sup> and 2.5 ± 1.3 m<sup>2</sup> g<sup>−1</sup>, respectively. The scattering measurements performed at MSC were in the medium/upper range of values reported by Andrews et al. (2011) for other mountaintop sites in Europe due to the frequent regional recirculation scenarios (SREG) and Saharan dust episodes (NAF) occurring mostly in spring/summer and causing the presence of polluted layers at the MSC altitude. However, the development of upslope winds and the possible presence of planetary boundary layer air at MSC altitude in summer may also have contributed to the high scattering observed. Under these summer conditions no clear diurnal cycles were observed for the measured extensive aerosol optical properties (&sigma;<sub>sp</sub>, &sigma;<sub>bsp</sub> and &sigma;<sub>ap</sub>). Conversely, low &sigma;<sub>sp</sub> and &sigma;<sub>ap</sub> at MSC were measured during Atlantic advections (AA) and winter regional anticyclonic episodes (WREG) typically observed during the cold season in the western Mediterranean. Therefore, a season-dependent decrease in the magnitude of aerosol extensive properties was observed when MSC was in the free troposphere, with the highest free-troposphere vs. all-data difference observed in winter and the lowest in spring/summer. The location of MSC station allowed for a reliable characterization of aerosols as a function of the main synoptic meteorological patterns. The SAE was the lowest during NAF and showed an inverse correlation with the outbreak intensity, indicating a progressive shift toward larger particles. Moreover, the strength of NAF episodes in the region led to a slope of the scattering vs. absorption relationship among the lowest reported for other mountaintop sites worldwide, indicating that MSC was dominated by dust aerosols at high aerosol loading. As a consequence, SSA showed a nearly monotonic increase with increasing particle concentration and scattering. The SAE was the highest during SREG, indicating the presence of polluted layers dominated by smaller particles. Correspondingly, the asymmetry parameter was lower under SREG compared with NAF. The MAC and MSCS were significantly higher during NAF and SREG compared to AA and WREG, indicating an increase of absorption and scattering efficiencies associated with the summer polluted scenarios. The optical measurements performed at the MSC remote site were compared with those simultaneously performed at a regional background station in the western Mediterranean Basin located at around 700 m a.s.l. upstream of the MSC station

    Surface correlations for two-dimensional Coulomb fluids in a disc

    Full text link
    After a brief review of previous work, two exactly solvable two-dimensional models of a finite Coulomb fluid in a disc are studied. The charge correlation function near the boundary circle is computed. When the disc radius is large compared to the bulk correlation length, a correlation function of the surface charge density can be defined. It is checked, on the solvable models, that this correlation function does have the generic long-range behaviour, decaying as the inverse square distance, predicted by macroscopic electrostatics. In the case of a two-component plasma (Coulomb fluid made of two species of particles of opposite charges), the density correlation function on the boundary circle itself is conjectured to have a temperature-independent behaviour, decaying as the -4 power of the distance.Comment: 15 pages, Latex, submitted to J.Phys.:Condens.Matte

    Correlations in a confined magnetized free-electron gas

    Full text link
    Equilibrium quantum statistical methods are used to study the pair correlation function for a magnetized free-electron gas in the presence of a hard wall that is parallel to the field. With the help of a path-integral technique and a Green function representation the modifications in the correlation function caused by the wall are determined both for a non-degenerate and for a completely degenerate gas. In the latter case the asymptotic behaviour of the correlation function for large position differences in the direction parallel to the wall and perpendicular to the field, is found to change from Gaussian in the bulk to algebraic near the wall.Comment: 24 pages, 10 figures, submitted to J. Phys. A: Math. Ge

    Indicadores técnicos para priorizar el orden de actuación en la rehabilitación integral de viviendas sociales

    Get PDF
    Para abordar la rehabilitación integral del parque edificatorio de vivienda social española, cuya necesidad se ha puesto de manifiesto en varios informes recientes, es preciso desarrollar indicadores de apoyo en la toma de decisiones sobre el orden de actuación. Sería de gran utilidad para la Administración contar con indicadores grafiables en planos que permitan identificar, en función del presupuesto disponible en cada momento, los conjuntos de viviendas que con mayor urgencia requieren rehabilitación tanto por su nivel de vulnerabilidad física como social. Tras la realización de un estado del arte de los informes existentes aplicables a la priorización de la rehabilitación de la vivienda social y su análisis crítico, observamos que es necesario crear nuevos indicadores de vulnerabilidad física, dado que esta dimensión se encuentra insuficientemente desarrollada, particularmente en lo referente a indicadores sobre la eficiencia energética y la calidad acústica de los edificios. Para la propuesta de nuevos indicadores en estos ámbitos, nos apoyamos en el modelo de indicadores ambientales denominado Presión-Estado-Respuesta (PER), propuesto por la Organización para la Cooperación y Desarrollo Económico (OCDE), que distingue entre indicadores de presión, que describen las variables que causan los problemas (por ejemplo, viviendas sin calefacción), indicadores de estado, que describen el estado del medio ambiente (por ejemplo, emisiones de CO2 por uso de calefacción) e indicadores de respuesta, que demuestran los esfuerzos de la sociedad para solucionar los problemas (por ejemplo, la tentativa que existió de penalizar el exceso de consumo de luz). Basado en este modelo, cuya lógica de causalidad redefinimos para su aplicación al caso de la edificación, decidimos la conveniencia de desarrollar indicadores de estado sobre consumos energéticos y nivel de molestia acústica. Estos indicadores requerirán asimismo el desarrollo de otros indicadores de presión previos, que son asimismo enunciados en la presente ponencia
    corecore