50 research outputs found

    Proteomic analysis in lupus mice identifies Coronin-1A as a potential biomarker for lupus nephritis

    Get PDF
    Background Approximately 50% of systemic lupus erythematosus (SLE) patients develop nephritis, which is among the most severe and frequent complications of the disease and a leading cause of morbidity and mortality. Despite intensive research, there are still no reliable lupus nephritis (LN) markers in clinical use that can assess renal damage and activity with a high sensitivity and specificity. To this end, the aim of this study was to identify new clinically relevant tissue-specific protein biomarkers and possible underlying molecular mechanisms associated with renal involvement in SLE, using mass spectrometry (MS)-based proteomics. Methods Kidneys were harvested from female triple congenic B6.NZMsle1/sle2/sle3 lupus mice model, and the respective sex- and age-matched C57BL/6 control mice at 12, 24 and 36 weeks of age, representing pre-symptomatic, established and end-stage LN, respectively. Proteins were extracted from kidneys, purified, reduced, alkylated and digested by trypsin. Purified peptides were separated by liquid chromatography and analysed by high-resolution MS. Data were processed by the Progenesis QIp software, and functional annotation analysis was performed using DAVID bioinformatics resources. Immunofluorescence and multiple reaction monitoring (MRM) MS methods were used to confirm prospective biomarkers in SLE mouse strains as well as human serum samples. Results Proteomic profiling of kidney tissues from SLE and control mice resulted in the identification of more than 3800 unique proteins. Pathway analysis revealed a number of dysregulated molecular pathways that may be mechanistically involved in renal pathology, including phagosome and proximal tubule bicarbonate reclamation pathways. Proteomic analysis supported by human transcriptomic data and pathway analysis revealed Coronin-1A, Ubiquitin-like protein ISG15, and Rho GDP-dissociation inhibitor 2, as potential LN biomarkers. These results were further validated in other SLE mouse strains using MRM-MS. Most importantly, experiments in humans showed that measurement of Coronin-1A in human sera using MRM-MS can segregate LN patients from SLE patients without nephritis with a high sensitivity (100%) and specificity (100%). Conclusions These preliminary findings suggest that serum Coronin-1A may serve as a promising non-invasive biomarker for LN and, upon validation in larger cohorts, may be employed in the future as a screening test for renal disease in SLE patients

    Causal Modeling Using Network Ensemble Simulations of Genetic and Gene Expression Data Predicts Genes Involved in Rheumatoid Arthritis

    Get PDF
    Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86 - a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution

    Interleukin 6 Accelerates Mortality by Promoting the Progression of the Systemic Lupus Erythematosus-Like Disease of BXSB. Yaa Mice

    Get PDF
    IL6 is a multifunctional cytokine that drives terminal B cell differentiation and secretion of immunoglobulins. IL6 also cooperates with IL21 to promote differentiation of CD4(+) T follicular helper cells (TFH). Elevated serum levels of IL6 correlate with disease flares in patients with systemic lupus erythematosus (SLE). We previously reported that IL21 produced by T-FH plays a critical role in the development of the SLE-like disease of BXSB. Yaa mice. To examine the possible contributions of IL6 to disease, we compared disease parameters in IL6-deficient and IL6-competent BXSB. Yaa mice. We report that survival of IL6-deficient BXSB. Yaa mice was significantly prolonged in association with significant reductions in a variety of autoimmune manifestations. Moreover, B cells stimulated by co-engagement of TLR7 and B cell receptor (BCR) produced high levels of IL6 that was further augmented by stimulation with Type I interferon (IFN1). Importantly, the frequencies of T-FH and serum levels of IL21 were significantly reduced in IL6-deficient mice. These findings suggest that high-level production of IL6 by B cells induced by integrated signaling from the IFN1 receptor, TLR7 and BCR promotes the differentiation of IL21-secreting T-FH in a signaling sequence that drives the lethal autoimmune disease of BXSB. Yaa mice.Peer reviewe

    CymeR: cytometry analysis using KNIME, Docker and R

    No full text
    International audienc

    CymeR: cytometry analysis using KNIME, Docker and R

    No full text
    International audienc

    Association of Interferon Regulatory Factor 5 (IRF5) polymorphisms with systemic lupus erythematosus (SLE)

    No full text
    BACKGROUND: Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the dysfunction of immune cells, leading to hyperactivity of B cells and over-production of autoantibodies and the formation of immune complexes. The level of IFN-α, a type I interferon, is correlated with both SLE disease activity and severity, and is therefore suggested to be involved in the pathogenesis of SLE. Activation of transcription factors, including Interferon Regulatory Factors (IRFs) 3, 5 and 7 can modulate the expression of type I IFN genes. IRFs control inflammation, immunity and apoptosis. Irf5 knockout mouse also shows reduction of pro-inflammatory cytokines, including IL-6, IL-12 and TNF-a production. Recently several association studies in different populations have reported that IRF5 gene is a susceptibility gene of SLE. METHODS: We hypothesized that polymorphisms of IRF5 may affect the susceptibility and severity of SLE in the Hong Kong Chinese population. SNP rs2004640 creates a 5’ donor splice site for alternate isoform of transcript in exon 1, whereas rs10954213 creates a functional polyadenylation site in 3’ UTR and affects the expression of transcript variants. The 2 SNPs were genotyped in 444 SLE patients and 410 healthy controls, using sequencing. RESULTS: No association of IRF5 gene polymorphisms with SLE was found. However, an overall difference in the distribution of the haplotype frequencies between SLE patients and controls was detected. The haplotype TA was identified as a probable risk haplotypes associated with SLE
    corecore