12 research outputs found

    Tilting mechanisms in domino faults of the Sierra de San Miguelito, central Mexico

    Get PDF
    A system of normal faults with similar strike that bound rotated blocks in the Sierra de San Miguelito, central Mexico, was studied to determine the genesis of rotation and to estimate the extensional strain. We show that rigid-body rotation was not the main deformation mechanism of the domino faults in this region. We propose vertical or inclined shear accommodated by slip on minor faults as the mechanism for strain in the blocks. In order to test quantitatively the amount of strain, we calculated the extension assuming vertical shear obtaining ca. ev ~0.20. This value is in good agreement with extensions previously reported for the Mesa Central of México. The bed extension required in this model reaches ca. 33% of the total horizontal extension (i. e. ebed =0.34 ev). Assuming self-similar geometry for fault displacements, it is shown that bed strain required in shear models can be liberated by the small faults. If the strain is calculated using the rigid-body rotation model, the lengthening is underestimated by up to 9%. This case study shows that shear models could be applied in volcanic zones

    Origin of superimposed and curved slickenlines in San Miguelito range, Central México

    Get PDF
    Interactions between intersecting faults cause local perturbations of the stress field in the vicinity of their intersections. Fault intersections are places of stress accumulation, stress relief and refraction of the stress trajectories; the slip vectors near these intersections are deviated from the maximum shear stress resolved by the far-field stress. In an intersecting fault system, superimposed, arc-shaped and zigzag slickenlines can be formed due to interaction between intersecting faults. We propose some mechanisms in which it is possible to recognize that the superimposed and curved slickenlines are produced from curvilinear translational fault motion. The geometrical models presented in this contribution are consistent with the slickenlines distribution observed in the vicinity of intersection lines, measured in the San Miguelito range, Mesa Central, México. Two tectonic phases have been inferred from our slip vector models near the intersection lines, which is consistent with observations of previously published work

    Origin of superimposed and curved slickenlines in San Miguelito range, Central México

    Get PDF
    Interactions between intersecting faults cause local perturbations of the stress field in the vicinity of their intersections. Fault intersections are places of stress accumulation, stress relief and refraction of the stress trajectories; the slip vectors near these intersections are deviated from the maximum shear stress resolved by the far-field stress. In an intersecting fault system, superimposed, arc-shaped and zigzag slickenlines can be formed due to interaction between intersecting faults. We propose some mechanisms in which it is possible to recognize that the superimposed and curved slickenlines are produced from curvilinear translational fault motion. The geometrical models presented in this contribution are consistent with the slickenlines distribution observed in the vicinity of intersection lines, measured in the San Miguelito range, Mesa Central, México. Two tectonic phases have been inferred from our slip vector models near the intersection lines, which is consistent with observations of previously published work

    Origin of superimposed and curved slickenlines in San Miguelito range, Central México

    Get PDF
    Interactions between intersecting faults cause local perturbations of the stress field in the vicinity of their intersections. Fault intersections are places of stress accumulation, stress relief and refraction of the stress trajectories; the slip vectors near these intersections are deviated from the maximum shear stress resolved by the far-field stress. In an intersecting fault system, superimposed, arc-shaped and zigzag slickenlines can be formed due to interaction between intersecting faults. We propose some mechanisms in which it is possible to recognize that the superimposed and curved slickenlines are produced from curvilinear translational fault motion. The geometrical models presented in this contribution are consistent with the slickenlines distribution observed in the vicinity of intersection lines, measured in the San Miguelito range, Mesa Central, México. Two tectonic phases have been inferred from our slip vector models near the intersection lines, which is consistent with observations of previously published work

    Tilting mechanisms in domino faults of the Sierra de San Miguelito, central Mexico

    No full text
    A system of normal faults with similar strike that bound rotated blocks in the Sierra de San Miguelito, central Mexico, was studied to determine the genesis of rotation and to estimate the extensional strain. We show that rigid-body rotation was not the main deformation mechanism of the domino faults in this region. We propose vertical or inclined shear accommodated by slip on minor faults as the mechanism for strain in the blocks. In order to test quantitatively the amount of strain, we calculated the extension assuming vertical shear obtaining ca. ev ~0.20. This value is in good agreement with extensions previously reported for the Mesa Central of México. The bed extension required in this model reaches ca. 33% of the total horizontal extension (i. e. ebed =0.34 ev). Assuming self-similar geometry for fault displacements, it is shown that bed strain required in shear models can be liberated by the small faults. If the strain is calculated using the rigid-body rotation model, the lengthening is underestimated by up to 9%. This case study shows that shear models could be applied in volcanic zones

    Origin of superimposed and curved slickenlines in San Miguelito range, Central México

    No full text
    Interactions between intersecting faults cause local perturbations of the stress field in the vicinity of their intersections. Fault intersections are places of stress accumulation, stress relief and refraction of the stress trajectories; the slip vectors near these intersections are deviated from the maximum shear stress resolved by the far-field stress. In an intersecting fault system, superimposed, arc-shaped and zigzag slickenlines can be formed due to interaction between intersecting faults. We propose some mechanisms in which it is possible to recognize that the superimposed and curved slickenlines are produced from curvilinear translational fault motion. The geometrical models presented in this contribution are consistent with the slickenlines distribution observed in the vicinity of intersection lines, measured in the San Miguelito range, Mesa Central, México. Two tectonic phases have been inferred from our slip vector models near the intersection lines, which is consistent with observations of previously published work
    corecore