31 research outputs found
An experimental extrapolation technique using the Gafchromic EBT3 film for relative output factor measurements in small x-ray fields
Purpose: An experimental extrapolation technique is presented, which can be used to determine the relative output factors for very small x-ray fields using the Gafchromic EBT3 film. Methods: Relative output factors were measured for the Brainlab SRS cones ranging in diameters from 4 to 30 mm on a Novalis Trilogy linear accelerator with 6 MV SRS x-rays. The relative output factor was determined from an experimental reducing circular region of interest (ROI) extrapolation technique developed to remove the effects of volume averaging. This was achieved by scanning the EBT3 film measurements with a high scanning resolution of 1200 dpi. From the high resolution scans, the size of the circular regions of interest was varied to produce a plot of relative output factors versus area of analysis. The plot was then extrapolated to zero to determine the relative output factor corresponding to zero volume. Results: Results have shown that for a 4 mm field size, the extrapolated relative output factor was measured as a value of 0.651 ± 0.018 as compared to 0.639 ± 0.019 and 0.633 ± 0.021 for 0.5 and 1.0 mm diameter of analysis values, respectively. This showed a change in the relative output factors of 1.8% and 2.8% at these comparative regions of interest sizes. In comparison, the 25 mm cone had negligible differences in the measured output factor between zero extrapolation, 0.5 and 1.0 mm diameter ROIs, respectively. Conclusions: This work shows that for very small fields such as 4.0 mm cone sizes, a measureable difference can be seen in the relative output factor based on the circular ROI and the size of the area of analysis using radiochromic film dosimetry. The authors recommend to scan the Gafchromic EBT3 film at a resolution of 1200 dpi for cone sizes less than 7.5 mm and to utilize an extrapolation technique for the output factor measurements of very small field dosimetry
Fabrication and supercapacitive properties of a thick electrode of carbon nanotube-RuO2 core-shell hybrid material with a high RuO2 loading
A core-shell hybrid material of amorphous hydrous RuO2-coated carbon nanotubes (CNT-RuO2) with a RuO2 loading as high as 82.4wt% was prepared by a solution method using RuCl3 and NaHCO3 aqueous solutions. The effect of preparation conditions, especially the dripping speed of the NaHCO3 solution, on the formation of the core-shell structure was investigated, and the corresponding mechanism was discussed. Supercapacitive properties of the CNT-RuO2 and amorphous hydrous RuO2 electrodes with a thickness of over 200ÎĽm were studied and the crucial factors to govern their rate capability were analyzed. For the thick CNT-RuO2 electrode, a comparison of its specific capacitance before and after subtracting the effect of the voltage drop of discharge curves caused by the inner resistance of the CNT-RuO2 symmetrical supercapacitor indicates that electronic conductivity is more important than proton diffusion in determining its rate capability