623 research outputs found

    Codes and Sequences for Information Retrieval and Stream Ciphers

    Get PDF
    Given a self-similar structure in codes and de Bruijn sequences, recursive techniques may be used to analyze and construct them. Batch codes partition the indices of code words into m buckets, where recovery of t symbols is accomplished by accessing at most tau in each bucket. This finds use in the retrieval of information spread over several devices. We introduce the concept of optimal batch codes, showing that binary Hamming codes and first order Reed-Muller codes are optimal. Then we study batch properties of binary Reed-Muller codes which have order less than half their length. Cartesian codes are defined by the evaluation of polynomials at a subset of points in F_q. We partition F_q into buckets defined by the quotient with a subspace V. Several properties equivalent to (V intersect ) = {0} for all i,j between 1 and mu are explored. With this framework, a code in F_q^(mu-1) capable of reconstructing mu indices is expanded to one in F_q^(mu) capable of reconstructing mu+1 indices. Using a base case in F_q^3, we are able to prove batch properties for codes in F_q. We generalize this to Cartesian Codes with a limit on the degree mu of the polynomials. De Bruijn sequences are cyclic sequences of length q^n that contain every q-ary word of length n exactly once. The pseudorandom properties of such sequences make them useful for stream ciphers. Under a particular homomorphism, the preimages of a binary de Bruijn sequence form two cycles. We examine a method for identifying points where these sequences may be joined to make a de Bruijn sequence of order n. Using the recursive structure of this construction, we are able to calculate sums of subsequences in O(n^4 log(n)) time, and the location of a word in O(n^5 log(n)) time. Together, these functions allow us to check the validity of any potential toggle point, which provides a method for efficiently generating a recursive specification. Each successful step takes O(k^5 log(k)), for k from 3 to n

    Nonlinear control of nonholonomic mobile robot formations

    Get PDF
    In this thesis, the framework developed to control a single nonholonomic mobile robot is expanded to include the control of formations of multiple nonholonomic mobile robots. A combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers typically found in literature --Abstract, page iv

    A robotics testbed : the design & implementation with applications.

    Get PDF
    In order to study the movements of autonomous mobile robots, a tool is needed to quantify those movements. A testbed is an apparatus that provides a designated space for multiple mobile robots while tracking their position in real-time. That tracking information can also be communicated to the robots themselves to serve as closed-loop feedback. With this tool, many techniques can be developed and validated through various control experiments. A design and implementation of a testbed is presented here. The testbed is analyzed for its performance and several applications are presented to demonstrate its usefulness

    Formation control of mobile robots and unmanned aerial vehicles

    Get PDF
    In this dissertation, the nonlinear control of nonholonomic mobile robot formations and unmanned aerial vehicle (UAV) formations is undertaken and presented in six papers. In the first paper, an asymptotically stable combined kinematic/torque control law is developed for leader-follower based formation control of mobile robots using backstepping. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. Subsequently, in the second paper, a novel NN observer is designed to estimate the linear and angular velocities of both the follower and its leader robot and a NN output feedback control law is developed. On the other hand, in the third paper, a NN-based output feedback control law is presented for the control of an underactuated quad rotor UAV, and a NN virtual control input scheme is proposed which allows all six degrees of freedom to be controlled using only four control inputs. The results of this paper are extended to include the control of quadrotor UAV formations, and a novel three-dimensional leader-follower framework is proposed in the fourth paper. Next, in the fifth paper, the discrete-time nonlinear optimal control is undertaken using two online approximators (OLA\u27s) to solve the infinite horizon Hamilton-Jacobi-Bellman (HJB) equation forward-in-time to achieve nearly optimal regulation and tracking control. In contrast, paper six utilizes a single OLA to solve the infinite horizon HJB and Hamilton-Jacobi-Isaacs (HJI) equations forward-intime for the near optimal regulation and tracking control of continuous affine nonlinear systems. The effectiveness of the optimal tracking controllers proposed in the fifth and sixth papers are then demonstrated using nonholonomic mobile robot formation control --Abstract, page iv

    Asymptotic Stability of Nonholonomic Mobile Robot Formations Using Multilayer Neural Networks

    Get PDF
    In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A multilayer neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as opposed to uniformly ultimately bounded (UUB) stability which is typical with most NN controllers. Simulation results are included

    Neural Network Control of Robot Formations Using RISE Feedback

    Get PDF
    In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as opposed to uniformly ultimately bounded (UUB) stability which is typical with most NN controllers. Theoretical results are demonstrated using numerical simulations

    Neural Network Control of Mobile Robot Formations Using RISE Feedback

    Get PDF
    In this paper, an asymptotically stable (AS) combined kinematic/torque control law is developed for leader-follower-based formation control using backstepping in order to accommodate the complete dynamics of the robots and the formation, and a neural network (NN) is introduced along with robust integral of the sign of the error feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are as and that the NN weights are bounded as opposed to uniformly ultimately bounded stability which is typical with most NN controllers. Additionally, the stability of the formation in the presence of obstacles is examined using Lyapunov methods, and by treating other robots in the formation as obstacles, collisions within the formation do not occur. The asymptotic stability of the follower robots as well as the entire formation during an obstacle avoidance maneuver is demonstrated using Lyapunov methods, and numerical results are provided to verify the theoretical conjectures

    Control of Nonholonomic Mobile Robot Formations Using Neural Networks

    Get PDF
    In this paper the control of formations of multiple nonholonomic mobile robots is attempted by integrating a kinematic controller with a neural network (NN) computed-torque controller. A combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers. The NN is introduced to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are uniformly ultimately bounded, and numerical results are provided

    Neural Network Output Feedback Control of a Quadrotor UAV

    Get PDF
    A neural network (NN) based output feedback controller for a quadrotor unmanned aerial vehicle (UAV) is proposed. The NNs are utilized in the observer and for generating virtual and actual control inputs, respectively, where the NNs learn the nonlinear dynamics of the UAV online including uncertain nonlinear terms like aerodynamic friction and blade flapping. It is shown using Lyapunov theory that the position, orientation, and velocity tracking errors, the virtual control and observer estimation errors, and the NN weight estimation errors for each NN are all semi-globally uniformly ultimately bounded (SGUUB) in the presence of bounded disturbances and NN functional reconstruction errors while simultaneously relaxing the separation principle
    • …
    corecore