
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Electrical and Computer Engineering Faculty 
Research & Creative Works Electrical and Computer Engineering 

01 Apr 2009 

Neural Network Control of Mobile Robot Formations Using RISE Neural Network Control of Mobile Robot Formations Using RISE 

Feedback Feedback 

Jagannathan Sarangapani 
Missouri University of Science and Technology, sarangap@mst.edu 

Travis Alan Dierks 

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork 

 Part of the Computer Sciences Commons, Electrical and Computer Engineering Commons, and the 

Operations Research, Systems Engineering and Industrial Engineering Commons 

Recommended Citation Recommended Citation 
J. Sarangapani and T. A. Dierks, "Neural Network Control of Mobile Robot Formations Using RISE 
Feedback," IEEE Transactions on Systems, Man and Cybernetics: Part B, Institute of Electrical and 
Electronics Engineers (IEEE), Apr 2009. 
The definitive version is available at https://doi.org/10.1109/TSMCB.2008.2005122 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229178005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1165&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F1165&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TSMCB.2008.2005122
mailto:scholarsmine@mst.edu


332 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 39, NO. 2, APRIL 2009

Neural Network Control of Mobile Robot
Formations Using RISE Feedback

Travis Dierks, Student Member, IEEE, and S. Jagannathan, Senior Member, IEEE

Abstract—In this paper, an asymptotically stable (AS) com-
bined kinematic/torque control law is developed for leader–
follower-based formation control using backstepping in order to
accommodate the complete dynamics of the robots and the forma-
tion, and a neural network (NN) is introduced along with robust
integral of the sign of the error feedback to approximate the
dynamics of the follower as well as its leader using online weight
tuning. It is shown using Lyapunov theory that the errors for the
entire formation are AS and that the NN weights are bounded
as opposed to uniformly ultimately bounded stability which is
typical with most NN controllers. Additionally, the stability of the
formation in the presence of obstacles is examined using Lyapunov
methods, and by treating other robots in the formation as
obstacles, collisions within the formation do not occur. The asymp-
totic stability of the follower robots as well as the entire formation
during an obstacle avoidance maneuver is demonstrated using
Lyapunov methods, and numerical results are provided to verify
the theoretical conjectures.

Index Terms—Formation control, kinematic/dynamic con-
troller, Lyapunov method, neural network (NN), robust integral
of the sign of the error (RISE).

I. INTRODUCTION

FOR COMPLEX tasks like search and rescue operations,
mapping unknown or hazardous environments, ensuring

security, and bomb sniffing, a team of robots working together
offers many advantages over employing a single robot. Recog-
nizing these benefits, robotic formation control has become
the focus of many research efforts [1]–[18], and several dif-
ferent approaches to the problem have been proposed includ-
ing behavior based, generalized coordinates, virtual structures,
and leader–follower, to name a few [1]. Separation–separation
and separation–bearing [2], [3] are two popular techniques
in leader–follower formation control, and in this work, the
latter will be considered, where the followers stay at specified
separation and bearing from its designated leader.

Many formation control works [2]–[7] have proposed
kinematic-based control laws to keep the formation. Thus,
perfect velocity tracking assumptions are required to ensure
that the desired formation is achieved as well as guarantee the
stability of the formation. Therefore, numerous works [8]–[16]
have proposed solution to formation control problem, which
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include the robot dynamics. In [8], a neural network (NN) is
introduced to learn the dynamics of the follower robots. The
works in [9], [10], and [11] propose decentralized approaches
based on virtual points, potential functions, and the abilities of
the individual robots, respectively; however, in each case, only
the inertial matrix of the robots is considered, and dynamics
like the centripetal and Coriolis matrix and the friction vector
are ignored. In [12], a centralized control scheme is developed,
and a PD controller is proposed to ensure velocity tracking;
however, the derivative of the control velocity is neglected.
Alternatively, the work in [13] proposes a dynamical control
scheme for leader–follower-based formation control which con-
siders the dynamics of the robots and guarantees that collisions
do not occur among them. However, this control scheme is
derived using potential as well as bump functions which must
be at least three times differentiable. In each of these works
[8]–[13], the dynamics of the follower robots are considered,
whereas the effect of the dynamics of the leader on the follower
(formation dynamics) is still ignored.

Our previous work [14] demonstrated that the dynamics of
the lead robot are incorporated into the torque control inputs
of the follower robots through the derivative of the follower’s
kinematic control velocity which was found to be a function
of its leader’s velocity. Consequently, in a formation of robots
where a follower robot follows another robot directly in front
of it, by considering its leader’s dynamics, a robot inherently
considers the dynamics of the robots in front of them. The
dynamical extension in [14] provided a rigorous method of
taking into account specific robot and formation dynamics;
however, the dynamics of each robot were considered known.
Therefore, in our previous work [15], an NN was introduced
to learn the unknown dynamics of each robot as well as the
dynamics of its respective leader, and the formation errors were
shown to be uniformly ultimately bounded (UUB) [20].

By contrast, the contribution of this paper lies in a new
asymptotically stable (AS) NN torque control law using an NN
combined with the recently developed robust integral of sign
of the error (RISE) feedback method originating in [18] and
referred to as RISE feedback in [19]. The asymptotic stability
of the entire formation, as well as the boundedness of the NN
weights, is shown using Lyapunov methods as opposed to UUB,
a result that is common in the NN control literature [15], [20].
The RISE method [19] is designed to reject bounded unmod-
eled disturbances, like NN functional reconstruction errors, to
yield asymptotic tracking. An approach to blend a multilayer
NN with RISE feedback for a single rigid robot control is
taken in [19] where the boundedness of the actual NN weights
is shown separately using the projection algorithm, while the
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convergence of the tracking errors is then demonstrated by us-
ing constant controller gains. Selection of the predefined convex
set in the projection algorithm to prevent the NN weights from
diverging is a challenging task since the convex set must be
carefully chosen to contain the ideal weights.

By contrast, in this paper, a novel weight tuning is used in-
stead of the projection algorithm [19], and the constant bounds
and gains in [19] are replaced here for formation control with
time-varying functions, allowing bounds and gains to be deter-
mined with more certainty. Furthermore, Lyapunov analysis is
presented to show the asymptotic convergence of the tracking
errors and the boundedness of the NN weights simultaneously.
The bounds and gains developed here are also applicable to
single rigid robot control [19] besides formation control.

Finally, it is shown that the proposed formation controller
achieves stability even in the presence of obstacles by inte-
grating the RISE method into a simple but effective obsta-
cle avoidance scheme which allows each follower robot to
navigate around obstacles while simultaneously tracking its
leader. When an obstacle is encountered, the desired separation
and bearing of the follower robot are modified so that the
follower navigates around the obstacle. Similar to that in [13],
collisions within the formation are also avoided in this work but
without the need of the additional assumption that higher order
derivatives are available. Other works that have considered
the formation in the presence of obstacles include [8] and
[10] where potential functions were utilized. Additionally, the
concept of potential trenches was applied in [16], whereas
the dynamic window approach was utilized [17]. Therefore,
the contributions of this manuscript include the following:
1) development of a novel formation control law by incor-
porating the dynamics of the leader, follower, and formation;
2) proof of asymptotic stability using Lyapunov stability even
with the use of NN for approximating the leader and follower
dynamics and their interactions; and 3) simplified scheme to
avoid collisions among the robots and with obstacles.

This paper is organized as follows. First, in Section II,
the leader–follower formation control problem is introduced,
and required background information is presented. Then, the
NN/RISE feedback control law is developed for the follower
robots as well as the formation leader, and the stability of the
overall formation is presented along with a general formation
controller structure. In Section III, a leader–follower obstacle
avoidance scheme is developed, and Section IV presents numer-
ical simulations. Section V provides some concluding remarks.

II. LEADER–FOLLOWER FORMATION CONTROL

Background information on leader–follower formation con-
trol is introduced next. Throughout the development, follower
robots will be denoted with a subscript “j,” while the leader will
be denoted by the subscript “i.” The goal of separation–bearing
formation control is to find a velocity control input such that

lim
t→∞

(Lijd − Lij) = 0 lim
t→∞

(Ψijd − Ψij) = 0 (1)

where Lij and Ψij are obtained using local sensory information
and denote the measured separation and bearing of the follower
j with respect to leader i, while Lijd and Ψijd represent the

Fig. 1. Separation–bearing formation control.

desired distance and angles, respectively [2], [3], as shown
in Fig. 1.

The kinematic equations for the front of the jth follower
robot, (xj , yj), can be written as

q̇j =

⎡⎣ ẋj

ẏj

θ̇j

⎤⎦ =

⎡⎣ cos θj −dj sin θj

sin θj dj cos θj

0 1

⎤⎦[ vj

ωj

]
= Sj(qj)vj (2)

where dj is the distance from the rear axle to the front of the
robot; qj = [xj yj θj ]T denotes the actual Cartesian posi-
tion for the front of the robot and orientation, respectively; vj

and ωj represent the linear and angular velocities, respectively;
and vj = [vj ωj ]T. Many robotic systems can be character-
ized as a system having an n-dimensional configuration space
C with generalized coordinates (q1, . . . , qn) subject to � con-
straints [23]. Applying the transformation [23], the dynamics
of the mobile robots are given by

M j v̇j + V mj(qj , q̇j)vj + F j(vj) + τdj
= τ j (3)

where M j ∈ �ρ×ρ is a constant positive-definite inertia
matrix, V mj ∈ �ρ×ρ is the bounded centripetal and Coriolis
matrix, F j ∈ �ρ is the friction vector, τdj ∈ �ρ represents
the unknown bounded disturbances such that ‖τdj‖ ≤ dM and

‖[τ̇T
d τ̈

T
d ]‖ ≤ d′M for known constants dM and d′M , Bj ∈ �ρ×ρ

is a constant nonsingular input transformation matrix, τ j =
Bjτj ∈ �ρ is the input vector, and τj ∈ �ρ is the control torque
vector. For complete details on (3) and the parameters that
comprise it, see [23]. It should be noted that for the nonholo-
nomic system of (2) and (3) with n generalized coordinates
q, � independent constraints, and ρ actuators, the number of
actuators is equal to n − �, and for this work, n = 3, � = 1,
and ρ = 2. We will also apply the assumption from [23] that
the linear and angular velocities are bounded for all time t.

A. Backstepping Controller Design

The complete description of the behavior of a mobile robot
is given by (2) and (3). The NN/RISE controller is introduced
so that the specific torque τ j(t) may be calculated so that
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(2) and (3) exhibit the desired behavior for a given control
velocity vjc(t) without knowing the complete dynamics of the
formation.

In this paper, a two-layer NN consisting of one layer of
randomly assigned constant weights V ∈ �axL in the input
layer and one layer of tunable weights W ∈ �Lxb in the
output layer, with a inputs, b outputs, and L hidden neurons,
is considered. The universal approximation property for NN
[20] states that for any smooth function f(x), there exists an
NN such that f(x) = WT σ(V T x) + ε for some ideal weights
W , V , where ε is the NN functional approximation error and
σ(·) : �L → �L is the activation function in the hidden layers.
It has been shown that by randomly selecting the input layer
weights V , the activation function σ(x) = σ(V T x) forms a
stochastic basis, and thus, the approximation property holds
for all inputs, x ∈ �a, in the compact set S [20]. Also, the
functional approximation error is bounded such that ‖ε‖ < εN ,
where εN is a known bound and dependent on S [20]. The
sigmoid activation function is considered here. For complete
details of the NN and its properties, see [20].

Remark 1: Throughout this paper, ‖ · ‖ and ‖ · ‖F will be
used interchangeably as the Frobenius vector and matrix norms,
respectively [20].

B. Leader–Follower Tracking Control

To complete the separation–bearing formation control ob-
jective (1), contributions from single-robot control frameworks
such as [23] are extended to leader–follower formation control.
Consider the tracking controller error system from [23] for a
single robot as

ej = Tej(qjr − qj)

=

⎡⎣ ej1

ej2

ej3

⎤⎦ =

⎡⎣ cos θj sin θj 0
− sin θj cos θj 0

0 0 1

⎤⎦⎡⎣xjr − xj

yjr − yj

θjr − θj

⎤⎦
ẋjr = vjr cos θjr, ẏjr = vjr sin θjr

θ̇jr = ωjr, q̇jr = [ ẋjr ẏjr θ̇jr ]T (4)

where xjr, yjr, θjr, and vjr = [vjr ωjr]T are the Cartesian
positions in the x- and y-directions, and the orientation and the
linear and angular velocities, respectively, of a virtual reference
robot for robot j [23]. In a single-robot control, a steering
control input vjc(t) is designed to solve the following three ba-
sic problems: path following, point stabilization, and trajectory
following such that limt→∞(qjr − qj) = 0 and limt→∞(vjr −
vj) = 0 [23]. If the mobile robot controller can successfully
track a class of smooth velocity control inputs, then all three
problems can be solved with the same controller [23].

To extend the contributions from single-robot control frame-
works such as (4) to leader–follower formation control, we
begin by replacing the virtual reference cart with a physical
mobile robot acting as the leader i for follower j subject to
kinematics and dynamics that are defined similarly to (2) and
(3), respectively. Then, define a reference position at a desired

separation Lijd and a desired bearing Ψijd for follower j with
respect to the rear of leader i as

xjr = xi − di cos θi + Lijd cos(Ψijd + θi)

yjr = yi − di sin θi + Lijd sin(Ψijd + θi) (5)

as well as a reference orientation θjr that will be defined in
the succeeding discussion. Next, define the actual position and
orientation of follower j as

xj =xi − di cos θi + Lij cos(Ψij + θi)

yj = yi − di sin θi + Lij sin(Ψij + θi)

θj = θj (6)

where Lij and Ψij are the actual separation and bearing of
follower j measured relative to the rear of the leader i. Substitu-
tion of (5) and (6) into the error system (4), and applying basic
trigonometric identities, the kinematic error for leader–follower
formation control is obtained as

ej =

⎡⎣ ej1

ej2

ej3

⎤⎦=

⎡⎣Lijd cos(Ψijd + θij) − Lij cos(Ψij + θij)
Lijd sin(Ψijd + θij) − Lij sin(Ψij + θij)

θjr − θj

⎤⎦
(7)

where θij = θi − θj and θjr is the reference orientation. Due to
the nonholonomic constraint as well as the separation–bearing
formation control objective, the orientations of each robot in the
formation will not be equal while the formation is turning, and
thus, the reference orientation of each robot cannot be chosen
such that θjr = θi. However, choosing the reference orientation
relative to the leader satisfying the differential equation

θ̇jr =
1
dj

(ωiLijd cos(ψijd + θij) + vi sin(θijr) + kj2ej2)

(8)

the asymptotic stability of all three error states can be shown,
where θijr = θi − θjr ∈ [−π, π] and kj2 is a positive design
constant. Furthermore, it can be shown that the reference orien-
tation of the follower will become equal to the orientation of the
leader (θi − θjr = 0) after formation errors have converged to
zero and when vi > 0 and ωi = 0 which is a desirable attribute.
The transformed error system (7) now acts as a formation track-
ing controller which not only seeks to remain at a fixed desired
distance Lijd with a desired angle Ψijd relative to the leader
robot i but will also achieve a relative orientation with respect
to the leader. By taking the desired separation and bearing, Lijd

and Ψijd, as constants similar to other works, and observing
the derivatives of the separation and bearing, L̇ij and Ψ̇ij

defined in [2], the error dynamics of (7) are found to be⎡⎣ėj1

ėj2

ėj3

⎤⎦=
⎡⎣ −vj +vi cos θij +ωjej2−ωiLijd sin(Ψijd+θij)
−ωjej1+vi sin θij−djωj +ωiLijd cos(Ψijd+θij)
1
dj

(ωiLijd cos(Ψijd+θij)+vi sin(θijr)+kj2ej2)−ωj

⎤⎦.
(9)

To stabilize the kinematic system, we propose the velocity
control inputs which are derived using Lyapunov methods for
follower robot j to achieve the desired position and orientation
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with respect to leader i as (10), shown at the bottom of the page,
where Kj = [kj1 kj2 kj3]T is a vector of positive design
constants. Next, define the velocity tracking error as

ejc = [ej4 ej5]T = vjc − vj = [vjc1 vjc2]T − [vj ωj ]T.
(11)

Observing vj = vjc − ejc, substituting the control veloc-
ity (10) into the error dynamics of (9), and applying basic
trigonometric identities reveal (12), shown at the bottom of
the page. Examining the closed-loop error dynamics (12), it
is clear that the stability of the kinematic system is dependent
on the velocity tracking error. Additionally, the origin ej = 0
and ejc = 0 consisting of the position, orientation, and velocity
tracking errors for follower j is an equilibrium point of the
closed-loop kinematic error dynamics (12).

C. Dynamical NN/RISE Controller Design

In the previous section, it was shown that the stability of
the kinematic error system depends on the velocity tracking
error. Therefore, the dynamics of the mobile robot are now
considered, and a velocity tracking loop is designed to ensure
vj → vjc asymptotically.

To begin the development, define the velocity filtered track-
ing errors as

rj = ėjc + αj(t)ejc (13)

where αj(t) is a time-varying real function greater than zero
that is defined as αj(t) = αj0 + αj1(t), where αj0 is a constant
and αj1(t) is a time-varying term. Multiplying both sides of
(13) by M j , adding and subtracting V mj

vjc and F j(vjc), and
substituting the robot dynamics (3) allow (13) to be rewritten as

M jrj = fdj
+ Tj + τdj

− τ j (14)

where

fdj
= M j v̇jc + V mj

vjc + F j(vjc)

Tj = ejc

(
αj(t)M j − V mj

)
+ F j(vj) − F j(vjc). (15)

Differentiating (14) then yields the filtered tracking error
dynamics

M j ṙj = −Ṁ jrj + ḟdj
+ Ṫj + τ̇dj

− τ̇ j . (16)

Using the universal approximation property for NNs [20],
define ḟdj

= WT
j σ(V T

j xdj) + εj , where WT
j and V T

j are the
bounded constant ideal weights such that ‖Wj‖F ≤ WM for
a known constant WM , εj is the bounded NN reconstruction
error such that ‖εj‖ ≤ εjM , ‖ε̇j‖ ≤ ε′jM for known constants
εjM and ε′jM , and xdj = [1 vjc v̇jc v̈jc θj ]T. Examining
the definition of the NN input xdj reveals that v̇jc and v̈jc are
necessary; however, recalling vjc in (10) that is a function of
the leader’s velocity reveals that v̇jc = fj(v̇i, ω̇i, vi, ωi, ej , ėj),
where fj(•) is the function describing v̇jc. The leader i’s
dynamics written in the form of (3) can be rewritten as v̇i =
M

−1
i (τ i − F i(vi) − V mivi), and substituting v̇i and (9) into

fj(•) results in the kinematic error dynamics of follower j and
the dynamics of leader i to become a part of v̇jc as

v̇jc = fj(vi, θi, τi, vj , θj , ej). (17)

It is not difficult to observe that v̈i, vjc, and v̇jc are also
smooth functions since the leader and follower robots’ dy-
namics are sufficiently smooth. As a consequence, v̈jc can
be approximated with relatively small error by the standard
second-order backward difference equation for a small sample
period Δt as

¨̂vjc = vjc(t) − 2vjc(t − Δt) + vjc(t − 2Δt). (18)

Using (18) and forming v̇jc under the assumption that v̇i = 0,
as well as including the terms vi, θi, and τi of the function
defined in (17), the estimated input to the NN x̂dj takes the form

of x̂dj = [1 vT
jc v̇T

jc|v̇i=0
¨̂v

T

jc θj vi τT
i θi eT

j ]T so
that the dynamics of the leader i can be estimated by the
NN, and the terms of v̇jc omitted by assuming v̇i = 0 can be
accounted for.

Remark 3: In the formation of the estimated NN input x̂dj ,
the terms vi, τT

i , and θi are considered available via a wireless
communication link which is a standard assumption (see [13]).

The NN approximation of ḟdj
is now defined as

˙̂
fdj

= ŴT
j σ

(
V T

j x̂dj

)
(19)

where ŴT
j is the NN estimate of the ideal weight matrix WT

j ,
and the control torque is now defined similarly [19] to be

τ j = f̂dj
+ μj (20)

vjc =
[

vjc1

vjc2

]
=
[

vi cos θij + kj1ej1 − ωiLijd sin(Ψijd + θij)
1
dj

(ωiLijd cos(Ψijd + θij) + vi sin(θijr) + kj2ej2 + kj3ej3)

]
(10)

⎡⎣ ėj1

ėj2

ėj3

⎤⎦ =

⎡⎢⎣ −kj1ej1 + ωjej2 + ej4

2vi sin
( ej3

2

)
cos

(
θi − θjr+θj

2

)
− kj2ej2 − kj3ej3 − ωjej1 + djej5

−kj3
dj

ej3 + ej5

⎤⎥⎦ (12)
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where μj is the RISE feedback term defined similarly to [18]
and [19] as

μj =(kjs+1)ejc(t)−(kjs+1)ejc(0)

+

t∫
0

[(kjs+1)αj(s)ejc(s)+(βj1(s)+βj2)sgn (ejc(s))] ds

(21)

such that μ̇j = (kjs + 1)rj + (βj1(t) + βj2)sgn(ejc), with
βj1(t) being a real positive time-varying gain function, kjs and
βj2 being positive real constants, and sgn(•) being the signum
function.

Remark 4: The projection algorithm is not used in this work
to tune the NN weights as in [19], and as a result, the constant
gains of [19] become time varying. Here, βj1(t) and αj(t) are
time-varying functions to facilitate in defining the upper bounds
necessary for the RISE aspects of the NN/RISE controller
which will be discussed in the succeeding development and in
the Appendix in comparison to [18] and [19]. Furthermore, the
constant term βj2 is not the same as the constant term β2 from
[18] and [19] and is included here to aid in the forthcoming
stability analysis.

Next, substituting the derivative of (20), as well as adding
and subtracting ejc and WT

j σ̂(V T
j x̂dj) into (16), yields

M j ṙj = −1
2
Ṁ jrj + Ñj + NBj1 + NBj2

−ejc − (kjs + 1)rj − (βj1(t) + βj2) sgn(ejc) (22)

where

Ñj = − 1
2
Ṁ jrj + Ṫj + ejc (23)

NBj1 = εj + τ̇dj
+ WT

j σ̃j

NBj2 = W̃T
j σ

(
V T

j x̂dj

)
= W̃T

j σ̂j (24)

and W̃j = Wj − Ŵj , σ̃j = σ(V T
j xdj) − σ(V T

j x̂dj). An upper

bound for Ñj can be obtained using the mean value theorem as
[18] and [19]

‖Ñj‖ ≤ ρ (‖zj‖) ‖zj‖ (25)

where zj = [eT
jc rT

j ]T and ρ(‖zj‖) is a positive globally
invertible nondecreasing function.

Lemma 1: The expressions in (24) and their derivatives are
upper bounded according to

‖NBj1‖ ≤ εN + d′M + 2WM

√
Nh

≡ ςj1 (26)

‖ṄBj1‖ ≤ ε′N + d′M + (
√

Nh + Nh) (C1 + C2‖ej‖)
≡ ς ′j1(t) (27)

‖NBj2‖ ≤
(
WM + ‖Ŵj‖F

)√
Nh

≡ ςj2(t) (28)

‖ṄBj2‖ ≤ C3‖ejc‖ + (
√

Nh + Nh)
(
WM + ‖Ŵj‖F

)
c2(t)

≡ ς ′j2(t) (29)

where C1, C2, and C3 are known positive constants and c2(t)
is a positive time-varying function based on ‖ ˙̂xdj‖.

Proof: See the Appendix.
To aid in the forthcoming stability analysis and to

facilitate time-varying gains, we define an auxiliary func-
tion as Lj = rT

j (NBj1 + NBj2 − βj1sgn(ejc)) − eT
jcNBj2 −

β̇j1‖ejc‖ − ėT
jcβj2sgn(ejc) − αjoβj2‖ejc‖.

Lemma 2: Given the auxiliary function Lj , let βj1(t) and
βj2 be chosen according to

βj1(t) ≥Kjβ + KjW ‖Ŵj‖F

+ Kje‖ej‖ + KjWe‖ej‖ ‖Ŵj‖F + Kjec‖ejc‖

βj2 > 0 (30)

with Kjβ , KjW , Kje, KjWe, and Kjec being known positive
constants, and then

t∫
0

Lj(s)ds ≤ γj

where γj = ‖ejc(0)‖(βj1(0) + βj2) − eT
jc(0)NBj3(0) ≥ 0,

with NBj3 = NBj1 + NBj2.
Proof: See the Appendix.

Before proceeding, it is important to note that rj = 0, ejc =
0, and W̃T

j = 0 are the equilibrium points of (22) in the
absence of disturbances and NN functional reconstruction error
(NBj1 = 0). The proof of this claim is straightforward through
the examination of (13) and (22).

Theorem 1—(Follower Dynamic Control): Given the non-
holonomic robot system consisting of (2) and (3) along with
the leader follower criterion of (1), let a smooth velocity control
input vjc(t) for follower j be given by (10), and let the torque
control for follower j given by (20) be applied to (3). Let the
NN weight tuning law be given as

˙̂
W j = Fj σ̂je

T
jc (31)

where Fj = FT
j > 0 is a design parameter. Then, there exists

a vector of positive constants Kj = [kj1 kj2 kj3]T, positive
constants kjs, βj2, and αj0, and positive time-varying functions
βj1(t) and αj(t), such that the position, orientation, and ve-
locity tracking errors ej and ejc are AS, and the NN weight
estimate errors W̃j are bounded for follower j, provided that
βj1(t) and βj2 are selected as in (30).

Proof: See the Appendix.

D. Leader Control Structure

In every formation, there is a formation leader i whose
kinematics and dynamics are defined similarly to (2) and (3),
respectively. From [23], the leader tracks a virtual reference
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robot, and the tracking error for the leader and its derivative
are found to be

ei =

⎡⎣ ei1

ei2

ei3

⎤⎦ =

⎡⎣ cos θi sin θi 0
− sin θi cos θi 0

0 0 1

⎤⎦⎡⎣xr − xi

yr − yi

θr − θi

⎤⎦
ėi =

⎡⎣ ėi1

ėi2

ėi3

⎤⎦ =

⎡⎣−vi + vir cos ei3 + ωiei2

−ωiei1 + vir sin ei3

ωir − ωi

⎤⎦ (32)

where xir, yir, θir, vir, and ωir are the states of a virtual
reference robot for leader i defined as in (4). In this work,
the virtual leader’s velocity vir = [vir ωir]T is defined by a
time-varying function that is twice differentiable. The leader’s
control velocity vic(t) is then defined similarly to [23] as

vic =
[

vic1

vic2

]
=
[

vir cos ei3 + ki1ei1

ωir + ki2virei2 + ki3ki2 sin ei3

]
(33)

where Ki = [ki1 ki2 ki3]T is a vector of positive constants,
and the third term of vic2 in (33) has been altered from [23]
to facilitate in the stability analysis to come. To construct
the dynamical NN/RISE controller for the leader i, define the
velocity tracking and filtered tracking errors as

eic = vic − vi ri = ėic + αi(t)eic. (34)

Using similar steps and justifications that are used to form
(14) for follower j, construct the error system for leader i to
be M iri = fdi

+ Ti + τdi
− τ i, where fdi

and Ti are defined
similarly to (15). The control torque τ i for leader i can be
defined similarly to follower j′s as

τ i = f̂di
+ μi (35)

where f̂di
is the estimate of fdi

, μi is the RISE feed-
back term defined similarly to the follower’s in (19)–(21).
The NN input vector for leader i is defined as x̂di =
[1 vT

ic v̇T
ic v̈T

ic|v̇i=0 θi vT
i ]T , where the term v̇T

ic is avail-
able, while the term v̈T

ic is not due to its dependence on v̇i

which is not known. As a result v̈T
ic is calculated assuming

v̇i = 0 and including the terms vi and θi in x̂di so that the
unknown dynamics can be accounted for by the NN similarly
to the treatment of (17).

Using the same steps and justifications that are used to form
(22), the closed-loop error system for the lead robot i can be
formed as

M iṙi = −1
2
Ṁ iri + Ñi + NBi1 + NBi2 − eic

−(kis + 1)ri − (βi1(t) + βi2) sgn(eic) (36)

where kis is a positive control gain parameter, and Ñi, NBi1,
and NBi2 are defined similarly to (23) and (24), respectively,
and are bounded similarly to the bounds defined in (25)–(29).
Furthermore, ri = 0, eic = 0, and W̃T

i = 0 are the equilibrium

points of (36) in the absence of disturbances and NN functional
reconstruction error (NBi1 = 0).

Theorem 2—(Leader Stability): Let the smooth velocity con-
trol input for leader i be given by (33), and let the toque control
input defined by (35) be applied to the leader robot i, defined
similarly to (3). Let the NN tuning law for leader i be defined
similarly to (31). Then, there exist a vector of positive constants
Ki = [ki1 ki2 ki3]T, positive constants kis, βi2, and αi0,
and positive time-varying functions βi1(t) and αi(t), such that
the position, orientation, and velocity tracking errors ei and eic

are AS, and the NN weight estimate errors W̃i are bounded for
follower j, provided that βi1(t) and βi2 are selected similarly
to (30).

Proof: See the Appendix.
Next, the stability of the entire formation is demonstrated in

the following theorem.

E. Formation Stability

Theorem 3—(Formation Stability): Consider a formation of
N + 1 robots consisting a leader i and N followers, and let
the hypotheses of Theorems 1 and 2 hold. Then, the formation
error eij = [eT

i eT
ic eT

j |j=1 . . . , eT
j |j=N eT

jc|j=1 . . . , eT
jc|j=N ]T,

where eij ∈ �(n+ρ)(1+N) represents the augmented position,
orientation, and velocity tracking error systems for the leader
i and N followers, respectively, is AS, and the NN weight
estimation errors W̃T

i and W̃T
j , j = 1, 2, . . . , N , for the leader

i and N followers, respectively, are bounded.
Proof: See the Appendix.

Remark 5: The stability of the entire formation for the case
when follower j becomes a leader to follower j + 1 follows
directly from Theorem 1 and selecting a Lyapunov candidate
to be the sum of the Lyapunov candidates for follower j and
follower j + 1, respectively. In this case, follower j becomes
the reference for follower j + 1, and thus, the dynamics of
follower j must be considered by follower j + 1. Since the
dynamics of follower j incorporates the dynamics of leader i,
follower j + 1 inherently brings in the dynamics of leader i by
considering the dynamics of follower j.

A general formation controller structure is shown in Fig. 2,
which includes the controller structures for the leader i and
multiple followers. Additionally, communication between the
robots is indicated. In the figure, leader i communicates its
velocity, orientation, and control torque to follower j, and
follower j communicates its velocity, orientation, and control
torque to follower j + 2, but it is not necessary for follower j
to relay the states of leader i to follower j + 2. Also note that
in a formation of robots, each robot may have more than one
follower.

III. LEADER–FOLLOWER OBSTACLE AVOIDANCE

Next, a simple but effective obstacle avoidance scheme
is proposed that will allow follower j to track its leader
while simultaneously avoiding obstacles. To accomplish this,
the desired separation and bearing are no longer considered
to be constants but are considered to be time varying, and
through the incorporation of RISE feedback, each follower in
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Fig. 2. General formation controller structure.

the formation asymptotically tracks the new reference position
while avoiding obstacles. In this section, the time-varying de-
sired separation and bearing will be denoted as Lijd(t) and
Ψijd(t), while the constant desired separation and bearing will
be written as Lijd and Ψijd, respectively. Furthermore, the
distance from the center of follower j to an obstacle sj and
the relative angle of the obstacle θjs are considered measur-
able, while the velocity vector vo = [vo ωo]T and orientation
θo of the obstacle are unavailable. It is standard to assume
that the formation leader i utilizes a path planning scheme
such that, by tracking the virtual reference cart described
in [23], the lead robot i navigates around any encountered
obstacles.

To begin with, consider the configuration shown in Fig. 3,
where it is desirable that the follower robot j maintains a
safe distance sd from the closest obstacle. When the nearest
edge of an obstacle is detected at angle θjs and distance sj

relative to the center of follower j such that sj < sd, the desired
separation and bearing, Lijd(t) and Ψijd(t), respectively, are

modified to ensure that the follower is steered away from the
obstacle by

Lijd(t) =Lijd − 1
2
KL

(
1
sj

− 1
sd

)2

sgn(θjsΨijd)

Ψijd(t) = Ψijd +
1
2
KΨ

(
1
sj

− 1
sd

)2

ξj (37)

where ξj = sgn(Ψijd)sgn(θjsΨijd), with sgn being the signum
function and KL and Kψ being positive design constants.
Examining (37), one can see that the shifts introduced to the
desired separation and bearing are similar to repulsive potential
functions commonly used in robotic path planning [22]. Here,
we use the potential-like function to push the desired set point
of the follower robot j away from the encountered obstacle,
thus steering the robot around the obstruction. Incorporation
of sgn(θjsΨijd) allows obstacles to be avoided on the left or
the right, depending on where the follower is located in the
formation and where the obstacle is located relative to the
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Fig. 3. Obstacle avoidance.

follower. This term also allows collisions to be avoided within
the formation by considered neighboring robots as obstacles.

With the introduction of obstacle avoidance schemes, the
orientation of the follower j will vary from its reference ori-
entation as a result of avoiding an obstacle that was in the path
of the follower j but not its leader. Therefore, while avoiding
an obstacle, it is logical for follower j to track a reference
point, but no specific orientation with respect to its leader.
Thus, consider the formation tracking control error system
presented in (7), but it is rewritten to include only the normal
and tangential position error components as

ejo =
[

ejo1

ejo2

]
=
[

Lijd(t) cos (Ψijd(t)+θij)−Lij cos(Ψij +θij)
Lijd(t) sin (Ψijd(t)+θij)−Lij sin(Ψij +θij)

]
. (38)

The dynamics of (38) can be found in a similar manner as that
of (9) and is written as (39), shown at the bottom of the page,
where

ėjo1 = L̇ijd(t) cos (Ψijd(t) + θij)
− Ψ̇ijd(t)Lijd(t) sin (Ψijd(t) + θij)

ėjo2 = L̇ijd(t) sin (Ψijd(t) + θij)
+ Ψ̇ijd(t)Lijd(t) cos (Ψijd(t) + θij) . (40)

The dynamics of the desired separation and bearing, Lijd(t)
and Ψijd(t) in (37), respectively, are necessary in the calcula-
tion of (40), and therefore, the derivative ṡj is also required.
The measured distance sj can be written in terms of the x and
y components of sj as s2

j = s2
jx + s2

jy , where sjx = xj − xo

and sjy = yj − yo, with xo and yo being the coordinates of the
obstacle. Note that the obstacle is not necessarily stationary, and
therefore, assume that the obstacle can be described using the
kinematic model as ẋo = vo cos θo and ẏo = vo sin θo. Using
this information along with (2), it is evident that the derivative
of sj is a function of the velocity vj and orientation θj of
follower j as well as the velocity vo and orientation θo of
the encountered obstacle. Since the velocity vo and orientation
θo of the obstacle are not available to follower j, ṡj must be
estimated, and as a result, L̇ijd(t) and Ψ̇ijd(t) must also be
estimated. Assuming that sj is a smooth function, define the
aforementioned estimates to be

˙̂
Lijd(t) = sgn(θjsΨijd)KL

(
1
sj

− 1
sd

)
1
s2

j

˙̂sj

˙̂Ψijd(t) = − ξjKψ

(
1
sj

− 1
sd

)
1
s2

j

˙̂sj (41)

and ˙̂sj = sj(t) − sj(t − Δt) is the estimate of ṡj for an arbi-
trarily small time interval Δt.

In order to show that the obstacle avoidance method is AS in
the presence of uncertainties, the RISE method described in the
previous section will again be utilized. To use the RISE method,
we begin by defining a filtered tracking error as

ϑj = ėjo + κejo (42)

where κ is a positive real design constant. Utilizing the error
dynamics (39) and (40), the filtered tracking error (42) can be
rewritten as

ϑj = Jj + Hj − Ejvj + κejo (43)

where Jj , Hj , and Ej are defined in (44) and (45), shown at
the bottom of the page, and ṡj is the real dynamics of sj . To
stabilize the filtered tracking error dynamics in the presence of

[
ėjo1

ėjo2

]
=
[

ėjo1 − vj + vi cos θij + ωjejo2 − ωiLijd(t) sin (Ψijd(t) + θij)
ėjo2 − ωjejo1 + vi sin θij − djωj + ωiLijd(t) cos (Ψijd(t) + θij)

]
(39)

Jj =
(

1
sj

− 1
sd

)
1
s2

j

ṡj

[
sgn(θjsΨijd)KL cos (Ψijd(t) + θij) + ξjKΨLijd(t) sin (Ψijd(t) + θij)
sgn(θjsΨijd)KL sin (Ψijd(t) + θij) − ξjKΨLijd(t) cos (Ψijd(t) + θij)

]
(44)

Hj =
[

vi cos(θij) − ωiLijd(t) sin (Ψijd(t) + θij) + ejo2ωj

vi sin(θij) + ωiLijd(t) cos (Ψijd(t) + θij) − ejo1ωj

]
Ej =

[
1 0
0 dj

]
(45)
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an obstacle, the following velocity control input for follower
robot j is proposed:

vjco = E−1
j

⎛⎝Hj + Ĵj + (G + κ)ejo

+

t∫
0

(Gκejo + βjosgn(ejo)) ds

⎞⎠ ∈ �2 (46)

where Ĵj is the estimate of Jj as a result of using ˙̂sj , and
G and βjo are positive real design constants. For analysis
purposes, we will assume that Jj = Ĵj + ζj , where ζj is the
error in estimation. Furthermore, we assume that the estimation
error and its derivative are bounded by positive real values ζM

and ζ ′M , respectively, such that ‖ζj‖ ≤ ζM and ‖ζ ′j‖ ≤ ζ ′M for
all time.

Defining the velocity tracking error ejco identically to (11),
substituting vj = vjco − ejco into (43), and taking the deriva-
tive, the closed-loop kinematic filtered error dynamics can be
written as

ϑ̇j = −Gϑj + ζj − βjosgn(ejo) + Ejejco (47)

and when there is zero estimation error, ζj = 0, the origin ϑj =
0, ejo = 0, and ejco = 0 is an equilibrium point of ϑ̇j . To aid
in the stability analysis of the follower robot in the presence of
obstacles, an auxiliary function is defined as Rj(t) = ϑT

j (ζj −
βjosgn(ejo)).

Lemma 3: Given the auxiliary function Rj(t), then∫ t

0 Rj(s)ds ≤ βjo‖ejo(0)‖ − eT
jo(0)ζj(0), provided that βjo is

selected as

βjo ≥ ζM +
1
κ

ζ ′M . (48)

Proof: See the Appendix.
Theorem 4—(Follower Obstacle Avoidance): Let the hy-

pothesis of Theorem 1 hold with (10) replaced by (46). Then,
there exist positive constants G, βjo, KL, and Kψ such that
position and velocity tracking errors for the follower are AS in
the presence of obstacles, provided that βjo is selected as (48).

Proof: See the Appendix.
Remark 6: Since leader robot i does not track a physical ro-

bot, any existing AS obstacle avoidance method can be utilized
by the leader to ensure the stability of the entire formation in
the presence of obstacles. The path planning algorithm for the
leader i is beyond the scope of this paper and is therefore not
included here.

Remark 7: The stability of a formation of N + 1 robots con-
sisting of a leader i and N followers in the presence of obstacles
follows directly by combining the results of Theorems 2 and 4
for j = 1, 2, 3, . . . , N , respectively. Furthermore, the stability
of a formation in the presence of obstacles for the case when
follower j becomes a leader to follower j + 1 follows directly
from Theorem 4 and combining the Lyapunov candidates for
follower j and follower j + 1 into a single Lyapunov function.

Remark 8: The proposed obstacle avoidance scheme is ob-
served to have potential limitations. Since the scheme only

TABLE I
FRICTION COEFFICIENTS

Fig. 4. Formation structure.

considers the closest obstruction, it is possible that, in a highly
cluttered environment, there may be more than one obstacle
within the robot’s safety zone; one of which could potentially
be another robot in the formation. In this case, the follower may
exhibit an oscillatory behavior between multiple obstructions
located within the safety zone which is not ideal; however, the
goal of the obstacle avoidance scheme is still achieved in that
collisions are avoided. In the event that two or more obstacles
are located at the same distance from follower j, the obstacle
which poses the greatest immediate threat of collision is con-
sidered. Future efforts will work to remove these limitations,
and the obstacle avoidance is not the focus of this effort.

Remark 9: The control velocity (46) can be applied for any
obstacle avoidance scheme in which the desired separation and
bearing are modified to steer the robot around the obstruction.
The only required modification to the control velocity (46)
is with respect to the vector Jj in (44) which contains the
dynamics of Lijd(t) and Ψijd(t), respectively.

Remark 10: By the design of the obstacle avoidance scheme,
the follower robot continues to track its leader while it navigates
around an obstacle through the use of the time-varying desired
separation and bearing. As the robot navigates around the
obstruction and the obstruction leaves the robot’s safety zone,
the time-varying desired separation and bearing naturally return
to the constant desired values. Thus, the robot itself returns to
its location in the formation.

IV. SIMULATION RESULTS

A formation of identical nonholonomic mobile robots is con-
sidered, where the leader’s trajectory is the desired formation
trajectory, and simulations are carried out in MATLAB under
the following two scenarios: with and without obstacles. In
the first scenario, the NN controller which renders UUB in
[15] is considered, and then, the NN/RISE controller which
has been shown to be AS in this paper is tested. The torque
controller developed in [15] is similar to the one in (20) but
without the extra RISE terms added in (21) and takes the form
of τ j = ŴT

j σ(xj) + (kjs + 1)ejc = f̂j + (kjs + 1)ejc, where

f̂j is the NN estimate of an unknown function.
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Fig. 5. Formation trajectories.

An additional difference between the torque control of this
paper and that of [15] is the fact that the NN estimates
the derivative of an unknown function in this work. In both
cases, unmodeled dynamics are introduced in the form of fric-
tion as F j = [μj1sign(vj) + μj2vj , μj3sign(ωj) + μj4ωj ]T ,
where μji denotes the coefficients of friction and summarized
in Table I. Additionally, disturbance and sensor noise terms
are added to the robot dynamics and state measurements,
respectively. Disturbances are added to the robot dynamics
and are generated from a normal distribution with mean zero,
variance one, and standard deviation one. The magnitude of the
disturbances is taken as two.

Sensor noise is also generated from an identical normal
distribution with magnitudes of ηv = 0.25, ηL = 0.1, and ηΨ =
0.05, where ηv , ηL, and ηΨ are for the velocity, separation,
and bearing measurements, respectively. In the second scenario,
obstacles are added in the path of the follower robots, and the
obstacle avoidance scheme of Theorem 4 is demonstrated, and
both static and dynamic obstacle environments are considered.

In the simulations, followers 1 and 2 track the leader,
while followers 3 and 4 track followers 1 and 2, respec-
tively, as shown in Fig. 4. The following parameters are

considered for the leader and its followers: m = 5 kg, I =
3 kg2, R = 0.175 m, r = 0.08 m, and d = 0.4 m. The control
gains for the leader were selected as ki1 = 10, ki2 = 5,
ki3 = 4, and Kis = 35, and for each follower, the gains
were selected as kj1 = 5, kj2 = 5, kj3 = 16.5, and Kjs = 35.
Five hidden layer neurons are considered in the NN for the
leader and each follower such that Nh = 5, and the NN
parameters for both the leader and each follower were se-
lected as Fj = Fi = 10. In addition, the RISE terms are se-
lected according to (30), with KW = 8, Ke = 15, KWe = 8,
Kβ = 15, and Kec = 10, and the filtered tracking error gain
α(t) is selected as α(t) = 5 + (1/β2)(KW

√
NhF‖ec‖ +

Kec(10 + 2.5‖e‖) + Ke(8 + 2.5‖e‖) + KWe((8 + 2.5‖e‖) ×
‖Ŵ‖F + F

√
Nh‖ec‖‖e‖)), with β2 = 20.

Remark 11: In the succeeding analysis, L, F1, F2, F3, and
F4 will be used to denote the leader, follower 1, follower 2,
follower 3, and follower 4, respectively.

A. Scenario I: Obstacle-Free Environment

In this scenario, the leader follows a virtual robot traveling
at a constant linear velocity of vir = 5 m/s with a time-varying
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Fig. 6. Formation errors.

TABLE II
AVERAGE STEADY-STATE FORMATION ERRORS

reference angular velocity, and the NN controller of our previ-
ous work and the NN/RISE controller are tested. The formation
is selected to be a wedge shape as in Fig. 4, where each follower
is to track its leader at a desired separation of Lijd = 2 m
with a bearing of Ψijd = ±120◦, depending on the follower’s
location, and for illustrative purposes, a fifth follower has been
added to track follower 2.

Fig. 5 shows the formation trajectories for both controllers as
the formation performs a sharp turn while navigating around a
barrier. Examining the trajectories reveals that both controllers
successfully perform the maneuver; however, upon closer ex-
amination, formation errors are seen propagating throughout
the formation for the case when the NN controller is used. The
evidence of the error propagation is best seen in the trajectories
of the robots on the inside of the turn, which have been enlarged
to facilitate viewing. Examining the trajectories in the bottom
right corner of Fig. 5, small errors can been seen in the path of
follower 2, while larger errors are seen in the path of follower 5
for the case when the NN controller is applied. On the other
hand, evidence of this error propagation is not present in the
paths of either robot when the NN/RISE controller is applied.
Thus, the theoretical conjectures of Theorem 1 are verified in
that the formation achieves asymptotic tracking in the presence
of bounded disturbances.

Fig. 6 shows the steady-state formation errors of each fol-
lower in the formation. The improved performance of the
NN/RISE controller over the NN controller is again observed,
particularly in the formation errors for followers 1, 2, and 3,
respectively, and the strength of AS over UUB is revealed.
The average formation errors for each follower are shown in
Table II, where it is observed that the average error was reduced

for each follower when the NN/RISE controller was utilized. In
some cases, as with follower 1, errors were reduced by 50%,
while marginal error reduction was observed for follower 5.
Reducing the formation errors for the robots near the front of
the formation helps prevent formation errors from propagating
through the formation, which was observed for the case when
the NN controller was applied.

Remark 12: The reference position of each robot in the
formation is defined with respect to its respective leader, not
the leader of the entire formation. As a result, the movement of
each robot propagates to its followers, a phenomenon observed
in Fig. 5 with followers 2 and 5 for the case when the NN
control was applied. Additionally, it was observed in Table II
that formation errors for follower 5 were marginally reduced
when the NN/RISE controller was applied; however, although
the reduction in the error was small, the improved performance
in the NN/RISE controller over the standard NN controller is
still significant since the oscillatory movements observed for
the NN controller in Fig. 5 are not observed for the case when
the NN/RISE control was applied.

B. Scenario II: Obstacle-Ridden Environment

Now, consider stationary and moving obstacles for the wedge
formation along with the controller gains outlined earlier along
with KL = 0.9, Kψ = 1.5, βo = 0.5, and κ = 2. The robots are
initialized so that they must avoid one another while attempting
to reach their desired location in the formation.

Fig. 7 shows the formation trajectories in the presence of both
stationary and moving obstacles, and examining this figure,
it is evident that the robots are able to avoid collisions with
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Fig. 7. Formation obstacle avoidance.

their neighbors and maneuver around the encountered obsta-
cles while simultaneously tracking their leaders. Because the
followers on the outside of the formation track the robots in
the inner formation, the movements of the robots in the interior
of the formation propagate to followers on the exterior of the
formation. Thus, when a robot on the interior of the formation
performs an obstacle avoidance maneuver, their movements
are mimicked by their followers, which is evident in Fig. 7.
As previously identified, the obstacle avoidance scheme poses
potential shortcomings in heavily cluttered environment. How-
ever, as shown in Fig. 7, the obstacle avoidance scheme can be
effective in undemanding environments as well as ensure that
collisions between robots in the formation do not occur.

V. CONCLUSION

In the absence of obstacles, an AS NN tracking controller
for leader–follower-based formation control was presented that
considers the dynamics of the leader and the followers us-
ing backstepping with RISE feedback. The feedback control
scheme is valid even when the dynamics of the followers
and their leader are unknown since the NN learns them all
online. Numerical results were presented, and the asymptotic
stability of the system was verified. Simulation results verify
the theoretical conjecture and reveal the strength of asymptotic
stability over the common result of most NN literature, UUB.
The asymptotic stability of the formation in the presence of
obstacles was also demonstrated by applying the RISE method
to a leader–follower obstacle avoidance scheme. The control
was shown to be effective in both static and dynamic obstacle
environments, and numerical results were presented. Further-
more, by treating robots in the formation as obstacles, collisions
within the formation were guaranteed not to occur. The stability
of the system was verified, and the simulation results verified
the theoretical conjecture.

Future efforts will address a more comprehensive obstacle
avoidance scheme for leader–follower formation control. This
work will focus on alleviating the previously observed limita-
tions of the current obstacle avoidance scheme so that multiple
objects and more complex environments can be navigated while
completing the leader–follower formation control objective.

APPENDIX

Remark A.1: To begin with, certain bounds must be estab-
lished, and for generality, the subscripts i and j will not be used
here. First, bounds on NN quantities will be frequently used as

‖W‖F ≤ WM ‖σ‖ ≤
√

Nh

‖σ(1 − σ)‖ ≤
√

Nh + Nh

∥∥∥ ˙̂
W
∥∥∥

F
≤ FM

√
Nh‖ec‖

(A1)

where ‖ec‖ refers to the velocity tracking error, Nh is the
constant number of hidden layer neurons, WM is the upper
bound of the ideal NN weights W , and FM = ‖F‖F is a
constant. Next, bounds relating the physical robotic system are
written as

|θ| ≤ qM ‖[vT v̇
T

v̈
T ]‖ ≤ VM

‖[τT τ̇T ]‖ ≤ TM (A2)

where qM , VM , and TM are known constants relating to the
physical capabilities of the mobile robot. Additionally, bounds
on the velocity control (10) and its derivatives can be estab-
lished as ∥∥∥[vT

c v̇T
c v̈T

c

...
v

T
c ]
∥∥∥ ≤ C4 + C5‖e‖ (A3)

where ‖e‖ = ‖[e1 e2 e3]‖ refers to the position and ori-
entation tracking errors, with Ci, i = 4, 5 being computable
constants dependent on (A2), and the selection of the velocity
control gains in (10). Since the backward difference equation
(18) is utilized to estimate the higher order derivatives of
the control velocity (10), the following bound must also be
established:∥∥∥∥[vT

c v̇T
c

¨̂v
T

c

...

v̂
T

c ]
∥∥∥∥ ≤ C6 + C7‖e‖ (A4)

with Ci, i = 6, 7 being computable constants. Now, the bounds
on the derivative of the ideal NN input xd as well as the
derivative of the estimated NN input x̂d are found to be

‖ẋd‖ ≤C8 + C9‖e‖ ≡ c1(t)

‖ ˙̂xd‖ ≤C10 + C11 ‖e‖ ≡ c2(t) (A5)

with Ci, i = 8, 9, 10, 11 being computable constants. The proof
of (A5) is straightforward using (A2)–(A4) along with using
similar steps described in [20].

Lemma 1: Upper bounds for NB1 and NB2 in (24) as well
as their derivatives can be defined as in (26)–(29).

Proof: Recalling ‖ε‖ ≤ εN , ‖[τ̇T
d τ̈

T
d ]‖ ≤ d′M as well

as observing (A1) reveal (26). Next, differentiating NB1 re-
veals ṄB1 = ε̇ + τ̈d + WT ˙̃σ. Then, recalling ‖ε̇‖ ≤ ε′N and
again applying the bounds in (A1) reveal ‖ṄB1‖ ≤ ε′N +
d′M + WM‖ ˙̃σ‖, and the bound in (27) follows by observing
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σ̃ = σ − σ̂ and applying the chain rule for derivatives
written as

‖ ˙̃σ‖ ≤ (
√

Nh + Nh)
(
‖ẋd‖ + ‖ ˙̂xd‖

)
= (
√

Nh + Nh) (c1(t) + c2(t))

= (
√

Nh + Nh) (C1 + C2‖e‖)

with C1 = C8 + C10 and C2 = C9 + C11.
Now, considering NB2, recalling W̃ = W − Ŵ , and ap-

plying (A1) reveal the bound in (28). Finally, differentiating

NB2 reveals ṄB2 = ˙̃
W

T

σ̂ + W̃T ˙̂σ, and observing
˙̃

W = − ˙̂
W ,

utilizing the NN weight update law (31), and applying (A1)
ṄB2 are bounded, as shown in (29), with C3 = FM

√
Nh.

Lemma 2: Given the auxiliary function

L = rT (NB1 + NB2 − β1sgn(ec)) − eT
c NB2

−β̇1‖ec‖ − ėT
c β2sgn(ec) − α0β2‖ec‖ (A6)

let β1(t) and β2 be chosen according to (30), and then
t∫

0

L(s)ds ≤ γ (A7)

where γ = ‖ec(0)‖(β1(0) + β2) − eT
c (0)NB3(0) ≥ 0, with

NB3 = NB1 + NB2.
Proof: Integrating both sides of (A6), substituting (13),

and defining NB3 = NB1 + NB2 yield
t∫

0

Lds =

t∫
0

ėT
c (NB3 − (β1 + β2)sgn(ec)) ds

+

t∫
0

α(t)eT
c

(
NB1 + NB2

(
1 − 1

α(t)

)

− β1sgn(ec)
)

ds

−
t∫

0

β̇1‖ec‖ds −
t∫

0

α0β2‖ec‖ds. (A8)

Using integration by parts, the first term can be written as
t∫

0

ėT
c (NB3 − (β1 + β2)sgn(ec)) ds

= eT
c (NB3 − (β1 + β2)sgn(ec))

∣∣t
0

−
t∫

0

eT
c

(
ṄB3 − β̇1sgn(ec)

)
ds (A9)

and substituting (A9) into (A8) reveals
t∫

0

Lds ≤
t∫

0

α(t) ‖ec‖
(
‖NB1‖ + ‖NB2‖

(
1 − 1

α(t)

)

+
‖ṄB3‖
α(t)

− β1 −
α0

α(t)
β2

)
ds

+ eT
c (NB3 − (β1 + β2)sgn(ec))

∣∣t
0
. (A10)

Recalling α(t) = α0 + α1(t), substituting the bounds
(26)–(29) into (A10), and rearranging allow the terms to
be written as

t∫
0

Lds ≤
t∫

0

α(t)‖ec‖
(

ς1 + ς2(t)
(

1 − 1
α(t)

)

+
ς ′1(t) + ς ′2(t)

α(t)
− β1 −

α0

α(t)
β2

)
ds

+ eT
c NB3

∣∣t
0
− ‖ec‖(β1 + β2)

∣∣t
0
. (A11)

Next, observing α(t) ≥ α0, 1/α(t) ≤ 1/α0, and 0 ≤ 1 −
1/α(t) < 1 for α0 ≥ 1, (A11) can be rewritten to reveal

t∫
0

Lds ≤ ‖ec‖ (ς1 + ς2(t)) − ‖ec‖ (β1(t) + β2)

+ ‖ec(0)‖ (β1(0) + β2) − eT
c (0)NB3(0)

+

t∫
0

α(t)‖ec‖
(

ς1 + ς2(t) +
ς ′1(t) + ς ′2(t)

α0

− β1 −
α0

α(t)
β2

)
ds. (A12)

Examining the first term on the right side of (A12), it can be
concluded that ‖ec‖(ς1 + ς2(t) − β1(t) − β2) ≤ 0 if

β1(t) + β2 ≥ ς1 + ς2(t). (A13)

If the inequality of (A13) is satisfied, then the constant
term ‖ec(0)‖(β1(0) + β2) − eT

c (0)NB3(0) is guaranteed to be
greater than zero. Next, the last term in (A12) is less than zero,
provided that

β1(t) +
α0

α(t)
β2 ≥ ς1 + ς2(t) +

ς ′1(t) + ς ′2(t)
α0

. (A14)

Finally, by selecting β1(t) ≥ ς1 + ς2(t) + (ς ′1(t) + ς ′2(t))/α0

and β2 > 0, the inequalities of (A13) and (A14) both hold.
Through expansion of the bounds in (26)–(29), the gain terms
defined in (30) are revealed to be

KW =
√

Nh + C10(
√

Nh + Nh)
/
α0

Ke = (
√

Nh + Nh)(C2 + WMC11)
/
α0

Kec = C3/α0

KWe = (
√

Nh + Nh)C11

/
α0

Kβ = ς1 + WM

√
Nh

+
(
ε′N + d′M + (

√
Nh+Nh)(C1+WMC10)

)/
α0.

Remark A.2: In the proof of the following theorems, the
subscripts i and j will be reinstated.

Proof of Theorem 1—(Follower Dynamic Control): Consider
the following positive-definite Lyapunov candidate:

V ′
j = αjoVj + ΛjVjNN (A15)
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where Λj = kj2 + dj(kj2 + kj3) > 0, Vj = (kj2/2)(e2
j1 +

e2
j2) + (djkj3/2)e2

j3, and

VjNN =
1
2
eT
jcejc +

1
2
rT
j M jrj + Pj + Qj (A16)

Pj = ‖ejc(0)‖ (βj1(0) + βj2) − eT
jc(0)NBj3(0)

−
t∫

0

Lj(s)ds (A17)

Qj =
1
2
tr
{

W̃T
j F−1

j W̃j

)
(A18)

and Lj(t) is defined in (A6). By Lemma 2, it can be concluded
that Pj ≥ 0. Before proceeding, it is important to observe the
existence of the functions U1(yj) and U2(yj) such that

U1(yj) ≤ V ′
j ≤ U2(yj) (A19)

where yj = [eT
j eT

jc rT
j

√
Pj

√
Qj ] ∈ �n+2(r+1),

U1(yj) and U2(yj) are defined by U1(yj) = λj1‖yj‖2

and U2(yj) = λj2‖yj‖2, respectively, with λj1 =
1/2min{Λj ,Λj m1, αjo kj2, αjodjkj3}, λj2 = max{Λj ,
(Λj/2)m2, αjokj2, αjodjkj3}, and m1 and m2 are known
positive constants satisfying

m1‖yj‖2 ≤ yT
j M jyj ≤ m2‖yj‖2.

Differentiating Vj and substituting the kinematic error dy-
namics (12)

V̇j = − kj2kj1e
2
j1 − k2

j2e
2
j2 − k2

j3e
2
j3

+ 2kj2ej2vi sin
(ej3

2

)
cos

(
θi −

θjr + θj

2

)
− kj3kj2ej2ej3 + kj2ej1ej4 + dj(kj2ej2 + kj3ej3)ej5.

Noting that | sin(ej3/2)| ≤ |ej3| for all ej3 ∈ [−π, π], V̇j takes
the form of

V̇j ≤−kj2kj1e
2
j1−k2

j2e
2
j2−k2

j3e
2
j3 +kj2 |ej2ej3|(kj3+2vimax)

+kj2ej1ej4 +dj (kj2ej2 +kj3ej3) ej5. (A20)

In the next step, it is desired to select kj3 such that
(kj3 + 2vimax) < 2kj3, and for any εvi > 0, selecting kj3 =
2vimax + εvi ensures that this inequality holds. Specifically,
we select εvi = 2εk3kj3, where εk3 ∈ (0, 1/2) so that kj3 =
2vimax/(1 − 2εk3), and selecting kj3 in this way allows V̇j to
be written as

V̇j ≤− kj2kj1e
2
j1 − εk3k

2
j2e

2
j2 − εk3k

2
j3e

2
j3

− (1 − εk3) (kj3|ej3| − kj2|ej2|)2

+ kj2ej1ej4 + dj(kj2ej2 + kj3ej3)ej5. (A21)

Next, differentiating (A16), noting Ṗj = −Lj , utilizing the
definition of the filtered tracking error (13), and substituting the

filter tracking error dynamics and the derivatives of (A17) and
(A18) reveal

V̇jNN = − αj(t)eT
jcejc − (kjs + 1)rT

j rj

+ rT
j Ñj + rT

j (NBj1 + NBj2) − rT
j βj1(t)sgn(ejc)

− rT
j βj2sgn(ejc) − Lj + tr

{
W̃T

j F−1 ˙̃
W j

)
.

Then, substitution of the NN weight tuning law (31) and Lj(t)
into (A6) reveals

V̇jNN ≤ −αj(t)‖ejc‖2 − (kjs + 1)‖rj‖2 + ‖rj‖ ‖Ñj‖

+
(
‖β̇j1‖ − αj(t)βj2

)
‖ejc‖ + αj0βj2‖ejc‖. (A22)

Recalling αj(t) = αj0 + αj1(t) and selecting αj1(t) ≥
‖β̇j1(t)‖/βj2 allow (A22) to be rewritten as

V̇jNN ≤ −αj0‖ejc‖2 − (kjs + 1)‖rj‖2 + ‖rj‖ ‖Ñj‖.
(A23)

Next, combining (A21) and (A23) and completing the squares
with respect to ej1, ej2, and ej3 yield

V̇ ′
j ≤ −αj0λj3‖ej‖2 − αj0λj4‖ejc‖2

−Λj(kjs + 1)‖rj‖2 + Λj‖rj‖ ‖Ñj‖

where λj3 = min(kj2(kj1 − 1/2), εk3kj2(kj2 − dj/2εk3),
εk3kj3(kj3 − dj/2εk3)) > 0, provided that kj1 > 1/2,
kj2 > dj/(2εk3), and kj3 > dj/(2εk3), and λj4 = min(kj2/
2 + dj(kj2 + kj3), kj2 + dj(kj2 + kj3)/2) > 0. Recalling
kj3 = 2vimax/(1 − 2εk3), the third inequality can be rewritten
as 2vimax/1 − 2εk3 > dj/2εk3 or εk3 > dj/(4vimax + 2dj),
and it is worth noting that εk3 ∈ (0, 1/2) as required since
vimax > 0. Next, completing the square with respect to ‖rj‖
and recalling the bound defined in (25), V̇ ′

j becomes

V̇ ′
j ≤ − αj0λj3‖ej‖2 − λj5‖zj‖2

− kjsΛj

(
‖rj‖ −

ρ (‖zj‖) ‖zj‖
2kjs

)2

+
Λjρ (‖zj‖)2 ‖zj‖2

4kjs
(A24)

where λj5 = min(αj0λj4,Λj) and greater than zero, provided
that αj0 > 0. The third term in (A24) is always less than or
equal to zero, so consider the first, second, and fourth terms in
the following inequality:

V̇ ′
j ≤ − αj0λj3‖ej‖2 −

(
λj5 −

Λjρ (‖zj‖)2

4kjs

)
‖zj‖2

≤ − U(yj) (A25)

where U(yj) = c‖[eT
j zT

j ]‖2 is a continuous positive-
semidefinite function for some real positive constant c defined
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on the domain D such that

V̇ ′
j ≤ − U(yj)

for

D =
{

yj ∈ �n+2(r+1)
∣∣∣‖yj‖ ≤ ρ−1

(√
4λj5kjs/Λj

)}
.

(A26)

The inequalities in (A19) and (A26) can be used to show
that V ′

j < ∞ and bounded in D, and therefore, ej , ejc, rj ,
Pj , and Qj are also bounded in D. Continuing this way by
observing the boundedness of ej , ejc, and rj in D, standard
linear analysis methods can be used to prove that all of the
quantities in (7), (9)–(11), (13), (14), (20), and (22) are also
bounded in D. Therefore, using the definitions for U(yj) and
zj(t), it can be concluded that U(yj) is uniformly continuous.
For complete details of the steps to draw this conclusion,
see [19].

Let S ⊂ D denote a region of attraction such that

S =

{
yj(t) ⊂ D|U2 (yj(t))

< λj2

(
ρ−1

(√
4λj5kjs/Λj

))2
}

. (A27)

Applying [21, Theorem 8.4], it can be concluded that
c‖[eT

j zT
j ]‖2 → 0 as t → ∞ ∀yj(0) ∈ S. Thus, ‖ej‖ → 0 as

t → ∞, and from the definition of zj(t), it is clear that ‖ejc‖ →
0 as t → ∞ for all yj(0) ∈ S, thus illustrating the asymptotic
stability of the tracking errors and the boundedness of the NN
weight estimates.

Remark A.3: The region of attraction (A27) can be made
arbitrarily large to include a larger set of initial conditions by
increasing the gain kjs. Also, the boundedness Ŵj does not
guarantee that the estimates converge to the ideal W unless
certain signals are persistently excited [20].

Proof of Theorem 2—(Leader Stability): Consider the
Lyapunov candidate

V ′
i = αi0Vi + ΛiViNN (A28)

where Λi = 1 + 1/ki2, Vi = 1/2(e2
i1 + e2

i2) + 1 − cos ei3/ki2,
and

ViNN =
1
2
eT
iceic +

1
2
rT
i M iri + Pi + Qi (A29)

where Pi and Qi are defined similarly to (A17) and (A18),
respectively.

First, taking the derivative of Vi and substituting the error
dynamics (32), control velocity (33), and velocity tracking error
(34) reveal the following after simplification

V̇i = −ki1e
2
i1 − ki3 sin2 ei3 + ei1eic4 +

sin ei3

ki2
eic5. (A30)

Then, examining (A29), one can see that it is defined similarly
to the Lyapunov function (A16) defined for follower j. Exploit-

ing these similarities and applying steps and justifications simi-
lar to the ones used to derive (A22)–(A27), it is straightforward
to show that there exist domain Di and region of attraction Si

such that V̇iNN ≤ −U(yi) and, thus, V̇iNN is uniformly contin-
uous, provided that ki1 > 1/2 and ki3 > 1/(2ki2). Therefore,
again applying [21, Theorem 8.4], it can be concluded that
ci‖[ei1 ei3 zT

i ]‖2 = ci‖[ei1 ei3 eT
ic rT

i ]‖2 → 0 as t →
∞ ∀yi(0) ∈ Si, where ci is a positive real constant. Thus,
‖[ei1 ei3]‖ → 0, and from the definition of zi(t), it is clear
that ‖eic‖ → 0 as t → ∞ for all yi(0) ∈ Si and, thus, V̇iNN →
0 as t → ∞.

Using the knowledge ‖[ei1 ei3]‖ → 0 and examining (31)
and the definition of eic, it is then straightforward to verify
that ei2 → 0 as t → ∞. Thus, the asymptotic stability of the
position and velocity tracking errors and the boundedness of
the NN weight estimates for leader i follow.

Proof of Theorem 3—(Formation Stability): Consider the
following Lyapunov candidate

Vij =
N∑
1

V ′
j + V ′

i (A31)

where V ′
j is defined in (A15) and V ′

i is defined in (A28).

Taking the derivative of (A31) yields V̇ij =
∑N

1 V̇ ′
j + V̇ ′

i , and
using the results of Theorems 1 and 2, there exists a region of
attraction Sij defined similarly to (A27) such that the positions,
orientation, and velocity tracking errors for the entire formation
are AS and that the NN weights remain bounded.

Lemma 3: If βjo is chosen according to (45) so that βjo ≥
ζM + (1/κ)ζ ′M , then

t∫
0

Rj(s)ds ≤ βjo ‖ejo(0)‖ − eT
jo(0)ζj(0). (A32)

Proof: Define Rj(t) = ϑT
j (ζj − βjosgn(ejo)). Integrat-

ing both sides and using (38) yield

t∫
0

Rj(s)ds =

t∫
0

κejo (ζj − βjosgn(ejo)) ds

+

t∫
0

ėjo (ζj − βjosgn(ejo)) ds. (A33)

Then, applying integration by parts to the second term on the
right side of (A33) reveals

t∫
0

Rj(s)ds ≤ eT
jo(t)ζj(t) − βjo‖ejo(t)‖

+ βjo‖ejo(0)‖ − eT
jo(0)ζj(0)

+

t∫
0

κ‖ejo‖
(
‖ζj‖ +

1
κ

∥∥ζ ′j∥∥− βjo

)
ds.

(A34)

Recalling ‖ζj‖ ≤ ζM and ‖ζ ′j‖ ≤ ζ ′M and selecting βjo accord-
ing to (45), the inequality of (A32) follows.
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Proof of Theorem 4—(Follower Obstacle Avoidance): Con-
sider the Lyapunov candidate V ′

jo = αj0Vjo + ΛjoVjNN, where
Λjo = 1 + dj , Vjo = (1/2)eT

joejo + (1/2)ϑT
j ϑj + Γj , VjNN as

defined in (A16), with ejc and rj being replaced by ejco

and rjo, respectively, and Γj = βj3‖ejo(0)‖ − eT
jo(0)ζj(0) −∫ t

0 Rj(s)ds. By Lemma 3, it can be concluded that Γj ≥ 0.
Taking the time derivative of Vjo and utilizing (42) and (47)
yield

V̇jo = eT
joϑj − κeT

joejo − GϑT
j ϑj + ϑT

j Ejejco. (A35)

Noting that eT
j ϑj ≤ (1/2)(eT

j ej + ϑT
j ϑj) ≤ eT

j ej + ϑT
j ϑj and

using the definition of Ej in (45), (A35) can be rewritten as

V̇jo ≤ −(κ − 1)eT
joejo − (G − 1)ϑT

j ϑj

+ ϑj1ejco4 + djϑj2ejco5. (A36)

Then, differentiating VjNN and applying steps and justifications
similar to the ones used to derive (A22)–(A27), except complet-
ing the squares with respect to ϑj instead of ej , it is straight-
forward to show the asymptotic stability of the position and
velocity tracking errors and the boundedness of the NN weight
estimates, provided that κ > 1 and G > 1 + (1/2)max(1, dj).
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