47 research outputs found

    Squeezing superfluid from a stone: Coupling superfluidity and elasticity in a supersolid

    Full text link
    In this work we start from the assumption that normal solid to supersolid (NS-SS) phase transition is continuous, and develop a phenomenological Landau theory of the transition in which superfluidity is coupled to the elasticity of the crystalline 4^4He lattice. We find that the elasticity does not affect the universal properties of the superfluid transition, so that in an unstressed crystal the well-known λ\lambda-anomaly in the heat capacity of the superfluid transition should also appear at the NS-SS transition. We also find that the onset of supersolidity leads to anomalies in the elastic constants near the transition; conversely, inhomogeneous strains in the lattice can induce local variations of the superfluid transition temperature, leading to a broadened transition.Comment: 4 page

    Probable detection of starlight reflected from the giant exoplanet orbiting tau Bootis

    Full text link
    Giant planets orbiting stars other than the Sun are clearly detectable through precise radial-velocity measurements of the orbital reflex motion of the parent star. In the four years since the discovery of the companion to the star 51 Peg, similar low-amplitude ``Doppler star wobbles'' have revealed the presence of some 20 planets orbiting nearby solar-type stars. Several of these newly-discovered planets are very close to their parent stars, in orbits with periods of only a few days. Being an indirect technique, however, the reflex-velocity method has little to say about the sizes or compositions of the planets, and can only place lower limits on their masses. Here we report the use of high-resolution optical spectroscopy to achieve a probable detection of the Doppler-shifted signature of starlight reflected from one of these objects, the giant exoplanet orbiting the star tau Bootis. Our data give the planet's orbital inclination i=29 degrees, indicating that its mass is some 8 times that of Jupiter, and suggest strongly that the planet has the size and reflectivity expected for a gas-giant planet.Comment: 15 pages, 4 figures. (Fig 1 and equation for epsilon on p1 para 2 revised; changed from double to single spacing

    Ground-State Roughness of the Disordered Substrate and Flux Line in d=2

    Get PDF
    We apply optimization algorithms to the problem of finding ground states for crystalline surfaces and flux lines arrays in presence of disorder. The algorithms provide ground states in polynomial time, which provides for a more precise study of the interface widths than from Monte Carlo simulations at finite temperature. Using d=2d=2 systems up to size 4202420^2, with a minimum of 2×1032 \times 10^3 realizations at each size, we find very strong evidence for a ln2(L)\ln^2(L) super-rough state at low temperatures.Comment: 10 pages, 3 PS figures, to appear in PR

    Thermal Rounding of the Charge Density Wave Depinning Transition

    Get PDF
    The rounding of the charge density wave depinning transition by thermal noise is examined. Hops by localized modes over small barriers trigger ``avalanches'', resulting in a creep velocity much larger than that expected from comparing thermal energies with typical barriers. For a field equal to the T=0T=0 depinning field, the creep velocity is predicted to have a {\em power-law} dependence on the temperature TT; numerical computations confirm this result. The predicted order of magnitude of the thermal rounding of the depinning transition is consistent with rounding seen in experiment.Comment: 12 pages + 3 Postscript figure

    Energetics and geometry of excitations in random systems

    Get PDF
    Methods for studying droplets in models with quenched disorder are critically examined. Low energy excitations in two dimensional models are investigated by finding minimal energy interior excitations and by computing the effect of bulk perturbations. The numerical data support the assumptions of compact droplets and a single exponent for droplet energy scaling. Analytic calculations show how strong corrections to power laws can result when samples and droplets are averaged over. Such corrections can explain apparent discrepancies in several previous numerical results for spin glasses.Comment: 4 pages, eps files include

    Disclination Unbinding Transition in Quantum Hall Liquid Crystals

    Get PDF
    We derive the the long-wavelength elastic theory for the quantum Hall smectic state starting from the Hartree-Fock approximation. Dislocations in this state lead to an effective nematic model for T>0T>0, which undergoes a disclination unbinding transition from a phase with algebraic orientational order into an isotropic phase. We obtain transition temperatures which are in qualitative agreement with recent experiments which have observed large anisotropies of the longitudinal resistivities in half-filled Landau levels, lending credence to the liquid crystal interpretation of experiments.Comment: Added explanation for spin dependence of anisotropic strength: The reason for this spin oscillation is simple: in the energetics of Eqs. (4-6), there is an energy scale e2/lbe^2/l_b that decreases with increasing filling factor ν\nu; simultaneously the matrix elements of the Coulomb interaction [Eq. (3)] increase with increasing LL index LL, resulting in the observed spin dependenc

    Solid-phase arsenic speciation in aquifer sediments: A micro-X-ray absorption spectroscopy approach for quantifying trace-level speciation

    Full text link
    Arsenic (As) is a geogenic contaminant affecting groundwater in geologically diverse systems globally. Arsenic release from aquifer sediments to groundwater is favored when biogeochemical conditions, especially oxidation-reduction (redox) potential, in aquifers fluctuate. The specific objective of this research is to identify the solid-phase sources and geochemical mechanisms of release of As in aquifers of the Des Moines Lobe glacial advance. The overarching concept is that conditions present at the aquifer-aquitard interfaces promote a suite of geochemical reactions leading to mineral alteration and release of As to groundwater. A microprobe X-ray absorption spectroscopy (μXAS) approach is developed and applied to rotosonic drill core samples to identify the solid-phase speciation of As in aquifer, aquitard, and aquifer-aquitard interface sediments. This approach addresses the low solid-phase As concentrations, as well as the fine-scale physical and chemical heterogeneity of the sediments. The spectroscopy data are analyzed using novel cosine-distance and correlation-distance hierarchical clustering for Fe 1s and As 1s μXAS datasets. The solid-phase Fe and As speciation is then interpreted using sediment and well-water chemical data to propose solid-phase As reservoirs and release mechanisms. The results confirm that in two of the three locations studied, the glacial sediment forming the aquitard is the source of As to the aquifer sediments. The results are consistent with three different As release mechanisms: (1) desorption from Fe (oxyhydr)oxides, (2) reductive dissolution of Fe (oxyhydr)oxides, and (3) oxidative dissolution of Fe sulfides. The findings confirm that glacial sediments at the interface between aquifer and aquitard are geochemically active zones for As. The diversity of As release mechanisms is consistent with the geographic heterogeneity observed in the distribution of elevated-As wells

    The Shapes of Flux Domains in the Intermediate State of Type-I Superconductors

    Full text link
    In the intermediate state of a thin type-I superconductor magnetic flux penetrates in a disordered set of highly branched and fingered macroscopic domains. To understand these shapes, we study in detail a recently proposed "current-loop" (CL) model that models the intermediate state as a collection of tense current ribbons flowing along the superconducting-normal interfaces and subject to the constraint of global flux conservation. The validity of this model is tested through a detailed reanalysis of Landau's original conformal mapping treatment of the laminar state, in which the superconductor-normal interfaces are flared within the slab, and of a closely-related straight-lamina model. A simplified dynamical model is described that elucidates the nature of possible shape instabilities of flux stripes and stripe arrays, and numerical studies of the highly nonlinear regime of those instabilities demonstrate patterns like those seen experimentally. Of particular interest is the buckling instability commonly seen in the intermediate state. The free-boundary approach further allows for a calculation of the elastic properties of the laminar state, which closely resembles that of smectic liquid crystals. We suggest several new experiments to explore of flux domain shape instabilities, including an Eckhaus instability induced by changing the out-of-plane magnetic field, and an analog of the Helfrich-Hurault instability of smectics induced by an in-plane field.Comment: 23 pages, 22 bitmapped postscript figures, RevTex 3.0, submitted to Phys. Rev. B. Higher resolution figures may be obtained by contacting the author

    Processes of local alcohol policy-making in England: Does the theory of policy transfer provide useful insights into public health decision-making?

    Get PDF
    BACKGROUND AND AIMS: Recent years have seen a rise in new and innovative policies to reduce alcohol consumption and related harm in England, which can be implemented by local, as opposed to national, policy-makers. The aim of this paper is to explore the processes that underpin the adoption of these alcohol policies within local authorities. In particular, it aims to assess whether the concept of policy transfer (i.e. a process through which knowledge about policies in one place is used in the development of policies in another time or place) provides a useful model for understanding local alcohol policy-making. METHODS: Qualitative data generated through in-depth interviews and focus groups from five case study sites across England were used to explore stakeholder experiences of alcohol policy transfer between local authorities. The purposive sample of policy actors included representatives from the police, trading standards, public health, licensing, and commissioning. Thematic analysis was used inductively to identify key features in the data. RESULTS: Themes from the policy transfer literature identified in the data were: policy copying, emulating, hybridization, and inspiration. Participants described a multitude of ways in which learning was shared between places, ranging from formal academic evaluation to opportunistic conversations in informal settings. Participants also described facilitators and constraints to policy transfer, such as the historical policy context and the local cultural, economic, and bureaucratic context, which influenced whether or not a policy that was perceived to work in one place might be transferred successfully to another context. CONCLUSIONS: Theories of policy transfer provide a promising framework for characterising processes of local alcohol policy-making in England, extending beyond debates regarding evidence-informed policy to account for a much wider range of considerations. Applying a policy transfer lens enables us to move beyond simple (but still important) questions of what is supported by 'robust' research evidence by paying greater attention to how policy making is carried out in practice and the multiple methods by which policies diffuse across jurisdictions
    corecore