32 research outputs found
Recommended from our members
Biomechanical adaptations of lower-limb amputee-gait: Effects of the echelon hydraulically damped foot. Segmental kinetic and kinematic responses to hydraulically damped prosthetic ankle-foot components in unilateral, trans-tibial amputees.
The aim of this thesis was to determine the biomechanical adaptations made by active unilateral trans-tibial amputees when they used a prosthesis incorporating a hydraulically-damped, articulating ankle-foot device compared to non-hydraulically attached devices. Kinematic and kinetic data were recorded while participants ambulated over a flat and level surface at their customary walking speeds and at speeds they perceived to be faster and slower using the hydraulic device and their habitual foot.
Use of the hydraulic device resulted in increases in self-selected walking speeds with a simultaneous reduction in intact-limb work per meter travelled. Use of the device also attenuated inappropriate fluctuations in the centre-of-pressure trajectory beneath the prosthetic foot and facilitated increased residual-knee loading-response flexion and prosthetic-limb load bearing during stance. These changes occurred despite the hydraulic device absorbing more, and returning less, energy than the participantsā habitual ankle-foot devices. The changes were present across all walking speeds but were greatest at customary walking speeds.
The findings suggest that a hydraulic ankle-foot device has mechanical benefits, during overground gait, for active unilateral trans-tibial amputees compared to other attachment methods. The findings also highlight that prosthetic ankle-foot device āperformanceā can be evaluated using surrogate measures and without modelling an āankle jointā on the prosthetic limb
The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees
yesBackground
Unilateral trans-tibial amputees have bilaterally reduced toe clearance, and an increased risk of foot contact, while crossing obstacles compared to the able-bodied. While the able-bodied tend to lead with a āpreferredā limb it is equivocal whether amputees prefer to lead with the intact or prosthetic limb. This study determined the effects of laterality, compared to side of amputation, on amputees' obstacle crossing performance. To help understand why laterality could affect performance we also assessed knee proprioception for both limbs.
Methods
Foot placement and toe clearance parameters were recorded while nine amputees crossed obstacles of varying heights leading with both their intact and prosthetic limbs. Joint-position sense was also assessed. Participants self-reported which limb was their preferred (dominant) limb.
Findings
There were no significant differences in foot placements or toe clearance variability across lead-limb conditions. There were no significant differences in toe clearance between intact and prosthetic lead-limbs (p = 0.28) but toe clearance was significantly higher when amputees led with their preferred compared to non-preferred limb (p = 0.025). There was no difference in joint-position sense between the intact and residual knees (p = 0.34) but joint-position sense tended to be more accurate for the preferred, compared to non-preferred limb (p = 0.08).
Interpretation
Findings suggest that, despite the mechanical constraints imposed by use of a prosthesis, laterality may be as important in lower-limb amputees as it is in the able bodied. This suggests that amputees should be encouraged to cross obstacles leading with their preferred limb.Engineering and Physical Sciences Research Counci
Impact on the biomechanics of overground gait of using an āEchelonā hydraulic ankleāfoot device in unilateral trans-tibial and trans-femoral amputees
YesIf a prosthetic foot creates resistance to forwards shank rotation as it deforms during loading, it will exert a braking effect on centre of mass progression. The present study determines whether the centre of mass braking effect exerted by an amputee's habitual rigid āankleā foot was reduced when they switched to using an āEchelonā hydraulic ankleāfoot device.
Nineteen lower limb amputees (eight trans-femoral, eleven trans-tibial) walked overground using their habitual dynamic-response foot with rigid āankleā or āEchelonā hydraulic ankleāfoot device. Analysis determined changes in how the centre of mass was transferred onto and above the prosthetic-foot, freely chosen walking speed, and spatio-temporal parameters of gait.
When using the hydraulic device both groups had a smoother/more rapid progression of the centre of pressure beneath the prosthetic hindfoot (p ā¤ 0.001), and a smaller reduction in centre of mass velocity during prosthetic-stance (p < 0.001). As a result freely chosen walking speed was higher in both groups when using the device (p ā¤ 0.005). In both groups stance and swing times and cadence were unaffected by foot condition whereas step length tended (p < 0.07) to increase bilaterally when using the hydraulic device. Effect size differences between foot types were comparable across groups.
Use of a hydraulic ankleāfoot device reduced the foot's braking effect for both amputee groups. Findings suggest that attenuation of the braking effect from the foot in early stance may be more important to prosthetic-foot function than its ability to return energy in late stance
Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle' damping
YesPassive prosthetic devices are set up to provide optimal function at customary walking speed and thus may function less effectively at other speeds. This partly explains why joint kinetic adaptations become more apparent in lower-limb amputees when walking at speeds other than customary. The present study determined whether a trans-tibial prosthesis incorporating a dynamic-response foot that was attached to the shank via an articulating hydraulic device (hyA-F) lessened speed-related adaptations in joint kinetics compared to when the foot was attached via a rigid, non-articulating attachment (rigF). Eight active unilateral trans-tibial amputees completed walking trials at their customary walking speed, and at speeds they deemed to be slow-comfortable and fast-comfortable whilst using each type of foot attachment. Moments and powers at the distal end of the prosthetic shank and at the intact joints of both limbs were compared between attachment conditions. There was no change in the amount of intact-limb ankle work across speed or attachment conditions. As speed level increased there was an increase on both limbs in the amount of hip and knee joint work done, and increases on the prosthetic side were greater when using the hyA-F. However, because all walking speed levels were higher when using the hyA-F, the intact-limb ankle and combined joints work per meter travelled were significantly lower; particularly so at the customary speed level. This was the case despite the hyA-F dissipating more energy during stance. In addition, the amount of eccentric work done per meter travelled became increased at the residual knee when using the hyA-F, with increases again greatest at customary speed. Findings indicate that a trans-tibial prosthesis incorporating a dynamic-response foot reduced speed-related changes in compensatory intact-limb joint kinetics when the foot was attached via an articulating hydraulic device compared to rigid attachment. As differences between attachment conditions were greatest at customary speed, findings indicate a hydraulic ankle-foot device is most effectual at the speed it is set-up for
Recommended from our members
Which prosthetic foot to prescribe? Biomechanical differences found during a single session comparison of different foot types hold true one year later
YesIntroduction: Clinicians typically use findings from cohort studies to objectively inform judgements regarding the potential (dis)advantages of prescribing a new prosthetic device. However, before finalising prescription a clinician will typically ask a patient to ātry outā a change of prosthetic device while the patient is at the clinic. Observed differences in gait when using the new device should be the result of the deviceās mechanical function, but could also conceivably be due to patient related factors which can change from day-to-day and can thus make device comparisons unreliable. To determine whether a deviceās mechanical function consistently has a more meaningful impact on gait than patient-related factors, the present study undertook quantitative gait analyses of a trans-tibial amputee walking using two different foot-ankle devices on two occasions over a year apart. If the observed differences present between devices, established using quantitative gait analysis, were in the same direction and of similar magnitude on each of the two occasions, this would indicate that device-related factors were more important than patient-related factors.
Methods: One adult male with a unilateral trans-tibial amputation completed repeated walking trials using two different prosthetic foot devices on two separate occasions, 14 months apart. Walking speed and sagittal plane joint kinematics and kinetics for both limbs were assessed on each occasion. Clinically meaningful differences in these biomechanical outcome variables were defined as those with an effect size difference (d) between prosthetic conditions of at least 0.4 (i.e. āmediumā effect size).
Results: Eight variables namely, walking speed, prosthetic āankleā peak plantar- and dorsi- flexion and peak positive power, and residual knee loading response flexion, peak stance-phase extension and flexion moments and peak negative power, displayed clinically meaningful differences (d > 0.4) between foot devices during the first session. All eight of these showed similar effect size differences during the second session despite the participant being heavier and older.
Conclusions: Findings suggest that a prosthetic deviceās mechanical function consistently has a more meaningful impact on gait than patient-related factors. These findings support the current clinical practice of making decisions regarding prosthetic prescription for an individual, based on a single session evaluation of their gait using two different devices. However, to confirm this conclusion, a case series using the same approach as the present study could be undertaken
Stair-specific algorithms for identification of touch-down and foot-off when descending or ascending a non-instrumented staircase.
yesThe present study introduces four event detection algorithms for defining touch-down and foot-off during stair descent and stair ascent using segmental kinematics. For stair descent, vertical velocity minima of the whole body center-of-mass was used to define touch-down, and foot-off was defined as the instant of trail limb peak knee flexion. For stair ascent, vertical velocity local minima of the lead-limb toe was used to define touch-down, and foot-off was defined as the local maxima in vertical displacement between the toe and pelvis. The performance of these algorithms was determined as the agreement in timings of kinematically derived events to those defined kinetically (ground reaction forces). Data were recorded while 17 young and 15 older adults completed stair descent and ascent trials over a four-step instrumented staircase. Trials were repeated for three stair riser height conditions (85 mm, 170 mm, and 255 mm). Kinematically derived touch-down and foot-off events showed good agreement (small 95% limits of agreement) with kinetically derived events for both young and older adults, across all riser heights, and for both ascent and descent. In addition, agreement metrics were better than those returned using existing kinematically derived event detection algorithms developed for overground gait. These results indicate that touch-down and foot-off during stair ascent and descent of non-instrumented staircases can be determined with acceptable precision using segmental kinematic data
Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to fixed attachment.
yesBackground
Disruptions to the progress of the centre-of-pressure trajectory beneath prosthetic feet have been reported previously. These disruptions reflect how body weight is transferred over the prosthetic limb and are governed by the compliance of the prosthetic foot device and its ability to simulate ankle function. This study investigated whether using an articulating hydraulic ankle attachment attenuates centre-of-pressure trajectory fluctuations under the prosthetic foot compared to a fixed attachment.
Methods
Twenty active unilateral trans-tibial amputees completed walking trials at their freely-selected, comfortable walking speed using both their habitual foot with either a rigid or elastic articulating attachment and a foot with a hydraulic ankle attachment. Centre-of-pressure displacement and velocity fluctuations beneath the prosthetic foot, prosthetic shank angular velocity during stance, and walking speed were compared between foot conditions.
Findings
Use of the hydraulic device eliminated or reduced the magnitude of posteriorly directed centre-of-pressure displacements, reduced centre-of-pressure velocity variability across single-support, increased mean forward angular velocity of the shank during early stance, and increased freely chosen comfortable walking speed (P ā¤ 0.002).
Interpretation
The attenuation of centre-of-pressure trajectory fluctuations when using the hydraulic device indicated bodyweight was transferred onto the prosthetic limb in a smoother, less faltering manner which allowed the centre of mass to translate more quickly over the foot
Toe clearance when walking in people with unilateral transtibial amputation: Effects of passive hydraulic ankle
YesMost clinically available prosthetic feet have a rigid attachment or incorporate an āankleā device allowing elastic articulation during stance, with the foot returning to a āneutralā position at toe-off. We investigated whether using a foot with a hydraulically controlled articulating ankle that allows the foot to be relatively dorsiflexed at toe-off and throughout swing would increase minimum toe clearance (MTC). Twenty-one people with unilateral transtibial amputation completed overground walking trials using their habitual prosthetic foot with rigid or elastic articulating attachment and a foot with a hydraulic ankle attachment (hyA-F). MTC and other kinematic variables were assessed across multiple trials. When using the hyA-F, mean MTC increased on both limbs (p= 0.03). On the prosthetic limb this was partly due to the device being in its fully dorsiflexed position at toe-off, which reduced the ātoes downā foot angle throughout swing (p = 0.01). Walking speed also increased when using the hyA-F (p = 0.001) and was associated with greater swing-limb hip flexion on the prosthetic side (p = 0.04), which may have contributed to the increase in mean MTC. Variability in MTC increased on the prosthetic side when using the hyA-F (p = 0.03), but this did not increase risk of tripping
The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees
yesBackground: Minimum toe clearance is a critical gait event because it coincides with peak forward velocity of the swing foot, and thus, there is an increased risk of tripping and falling. Trans-tibial amputees have increased risk of tripping compared to able-bodied individuals. Assessment of toe clearance during gait is thus clinically relevant. In able-bodied gait, minimum toe clearance increases with faster walking speeds, and it is widely reported that there is synchronicity between when peak swing-foot velocity and minimum toe clearance occur. There are no such studies involving lower-limb amputees.
Objectives: To determine the effects of walking speed on minimum toe clearance and on the temporal relationship between clearance and peak swing-foot velocity in unilateral trans-tibial amputees.
Study design: Cross-sectional.
Methods: A total of 10 trans-tibial participants walked at slow, customary and fast speeds. Minimum toe clearance and the timings of minimum toe clearance and peak swing-foot velocity were determined and compared between intact and prosthetic sides.
Results: Minimum toe clearance was reduced on the prosthetic side and, unlike on the intact side, did not increase with walking speed increase. Peak swing-foot velocity consistently occurred (~0.014 s) after point of minimum toe clearance on both limbs across all walking speeds, but there was no significant difference in the toeāground clearance between the two events.
Conclusion: The absence of speed related increases in minimum toe clearance on the prosthetic side suggests that speed related modulation of toe clearance for an intact limb typically occurs at the swing-limb ankle. The temporal consistency between peak foot velocity and minimum toe clearance on each limb suggests that swing-phase inter-segmental coordination is unaffected by trans-tibial amputation.
Clinical relevance The lack of increase in minimum toe clearance on the prosthetic side at higher walking speeds may potentially increase risk of tripping. Findings indicate that determining the instant of peak swing-foot velocity will also consistently identify when/where minimum toe clearance occurs