508 research outputs found

    Quantifying extreme behaviour in geomagnetic activity

    Get PDF
    Understanding the extremes in geomagnetic activity is an important component in understanding just how severe conditions can become in the terrestrial space environment. Extreme activity also has consequences for technological systems. On the ground, extreme geomagnetic behavior has an impact on navigation and position accuracy and the operation of power grids and pipeline networks. We therefore use a number of decades of one-minute mean magnetic data from magnetic observatories in Europe, together with the technique of extreme value statistics, to provide a preliminary exploration of the extremes in magnetic field variations and their one-minute rates of change. These extremes are expressed in terms of the variations that might be observed every 100 and 200 years in the horizontal strength and in the declination of the field. We find that both measured and extrapolated extreme values generally increase with geomagnetic latitude (as might be expected), though there is a marked maximum in estimated extreme levels between about 53 and 62 degrees north. At typical midlatitude European observatories (55–60 degrees geomagnetic latitude), compass variations may reach approximately 3–8 degrees/minute, and horizontal field changes may reach 1000–4000 nT/minute, in one magnetic storm once every 100 years. For storm return periods of 200 years the equivalent figures are 4–11 degrees/minute and 1000–6000 nT/minute

    Ganglioside Alters Phospholipase Trafficking, Inhibits NF-κB Assembly, and Protects Tight Junction Integrity

    Get PDF
    Background and Aims: Dietary gangliosides are present in human milk and consumed in low amounts from organ meats. Clinical and animal studies indicate that dietary gangliosides attenuate signaling processes that are a hallmark of inflammatory bowel disease (IBD). Gangliosides decrease pro-inflammatory markers, improve intestinal permeability, and reduce symptoms characteristic in patients with IBD. The objective of this study was to examine mechanisms by which dietary gangliosides exert beneficial effects on intestinal health. Methods: Studies were conducted in vitro using CaCo-2 intestinal epithelial cells. Gangliosides were extracted from milk powder and incubated with differentiated CaCo-2 cells after exposure to pro-inflammatory stimuli. Gut barrier integrity was assessed by electron microscopy, epithelial barrier function was examined by measuring transepithelial electric resistance, and content of HBD-2, IL-23, NF-κB, and sPLA2 was assessed by ELISA. Results: Ganglioside attenuated the decrease in integrity of tight junctions induced by pro-inflammatory stimuli and improved epithelial barrier function (P \u3c 0.05). Ganglioside decreased the basolateral secretion of sPLA2 (P ≤ 0.05), lowered HBD-2 and IL-23 levels (P ≤ 0.05), and inhibited NF-κB activation (P ≤ 0.05). Conclusions: In summary, the present study indicates that ganglioside GD3 improves intestinal integrity by altering sPLA2 trafficking, and the production of pro-inflammatory mediators is mitigated by decreasing assembly of the NF-κB complex. Dietary gangliosides may have promising potential beneficial effects in IBD as decreased inflammatory signaling, improved intestinal integrity, and maintenance of epithelial barrier function have been demonstrated in vitro

    The beginning of time? Evidence for catastrophic drought in Baringo in the early nineteenth century

    Get PDF
    New developments in the collection of palaeo-data over the past two decades have transformed our understanding of climate and environmental history in eastern Africa. This article utilises instrumental and proxy evidence of historical lake-level fluctuations from Baringo and Bogoria, along with other Rift Valley lakes, to document the timing and magnitude of hydroclimate variability at decadal to century time scales since 1750. These data allow us to construct a record of past climate variation not only for the Baringo basin proper, but also across a sizable portion of central and northern Kenya. This record is then set alongside historical evidence, from oral histories gathered amongst the peoples of northern Kenya and the Rift Valley and from contemporary observations recorded by travellers through the region, to offer a reinterpretation of human activity and its relationship to environmental history in the nineteenth century. The results reveal strong evidence of a catastrophic drought in the early nineteenth century, the effects of which radically alters our historical understanding of the character of settlement, mobility and identity within the Baringo–Bogoria basin

    Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN):an investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial

    Get PDF
    Background: For patients with heart failure, reduced left ventricular ejection fraction and iron deficiency, intravenous ferric carboxymaltose administration improves quality of life and exercise capacity in the short-term and reduces hospital admissions for heart failure up to 1 year. We aimed to evaluate the longer-term effects of intravenous ferric derisomaltose on cardiovascular events in patients with heart failure. Methods: IRONMAN was a prospective, randomised, open-label, blinded-endpoint trial done at 70 hospitals in the UK. Patients aged 18 years or older with heart failure (left ventricular ejection fraction ≤45%) and transferrin saturation less than 20% or serum ferritin less than 100 μg/L were eligible. Participants were randomly assigned (1:1) using a web-based system to intravenous ferric derisomaltose or usual care, stratified by recruitment context and trial site. The trial was open label, with masked adjudication of the outcomes. Intravenous ferric derisomaltose dose was determined by patient bodyweight and haemoglobin concentration. The primary outcome was recurrent hospital admissions for heart failure and cardiovascular death, assessed in all validly randomly assigned patients. Safety was assessed in all patients assigned to ferric derisomaltose who received at least one infusion and all patients assigned to usual care. A COVID-19 sensitivity analysis censoring follow-up on Sept 30, 2020, was prespecified. IRONMAN is registered with ClinicalTrials.gov, NCT02642562. Findings: Between Aug 25, 2016, and Oct 15, 2021, 1869 patients were screened for eligibility, of whom 1137 were randomly assigned to receive intravenous ferric derisomaltose (n=569) or usual care (n=568). Median follow-up was 2·7 years (IQR 1·8–3·6). 336 primary endpoints (22·4 per 100 patient-years) occurred in the ferric derisomaltose group and 411 (27·5 per 100 patient-years) occurred in the usual care group (rate ratio [RR] 0·82 [95% CI 0·66 to 1·02]; p=0·070). In the COVID-19 analysis, 210 primary endpoints (22·3 per 100 patient-years) occurred in the ferric derisomaltose group compared with 280 (29·3 per 100 patient-years) in the usual care group (RR 0·76 [95% CI 0·58 to 1·00]; p=0·047). No between-group differences in deaths or hospitalisations due to infections were observed. Fewer patients in the ferric derisomaltose group had cardiac serious adverse events (200 [36%]) than in the usual care group (243 [43%]; difference –7·00% [95% CI –12·69 to –1·32]; p=0·016). Interpretation: For a broad range of patients with heart failure, reduced left ventricular ejection fraction and iron deficiency, intravenous ferric derisomaltose administration was associated with a lower risk of hospital admissions for heart failure and cardiovascular death, further supporting the benefit of iron repletion in this population. Funding: British Heart Foundation and Pharmacosmos.</p

    Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN):an investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial

    Get PDF
    Background: For patients with heart failure, reduced left ventricular ejection fraction and iron deficiency, intravenous ferric carboxymaltose administration improves quality of life and exercise capacity in the short-term and reduces hospital admissions for heart failure up to 1 year. We aimed to evaluate the longer-term effects of intravenous ferric derisomaltose on cardiovascular events in patients with heart failure. Methods: IRONMAN was a prospective, randomised, open-label, blinded-endpoint trial done at 70 hospitals in the UK. Patients aged 18 years or older with heart failure (left ventricular ejection fraction ≤45%) and transferrin saturation less than 20% or serum ferritin less than 100 μg/L were eligible. Participants were randomly assigned (1:1) using a web-based system to intravenous ferric derisomaltose or usual care, stratified by recruitment context and trial site. The trial was open label, with masked adjudication of the outcomes. Intravenous ferric derisomaltose dose was determined by patient bodyweight and haemoglobin concentration. The primary outcome was recurrent hospital admissions for heart failure and cardiovascular death, assessed in all validly randomly assigned patients. Safety was assessed in all patients assigned to ferric derisomaltose who received at least one infusion and all patients assigned to usual care. A COVID-19 sensitivity analysis censoring follow-up on Sept 30, 2020, was prespecified. IRONMAN is registered with ClinicalTrials.gov, NCT02642562. Findings: Between Aug 25, 2016, and Oct 15, 2021, 1869 patients were screened for eligibility, of whom 1137 were randomly assigned to receive intravenous ferric derisomaltose (n=569) or usual care (n=568). Median follow-up was 2·7 years (IQR 1·8–3·6). 336 primary endpoints (22·4 per 100 patient-years) occurred in the ferric derisomaltose group and 411 (27·5 per 100 patient-years) occurred in the usual care group (rate ratio [RR] 0·82 [95% CI 0·66 to 1·02]; p=0·070). In the COVID-19 analysis, 210 primary endpoints (22·3 per 100 patient-years) occurred in the ferric derisomaltose group compared with 280 (29·3 per 100 patient-years) in the usual care group (RR 0·76 [95% CI 0·58 to 1·00]; p=0·047). No between-group differences in deaths or hospitalisations due to infections were observed. Fewer patients in the ferric derisomaltose group had cardiac serious adverse events (200 [36%]) than in the usual care group (243 [43%]; difference –7·00% [95% CI –12·69 to –1·32]; p=0·016). Interpretation: For a broad range of patients with heart failure, reduced left ventricular ejection fraction and iron deficiency, intravenous ferric derisomaltose administration was associated with a lower risk of hospital admissions for heart failure and cardiovascular death, further supporting the benefit of iron repletion in this population. Funding: British Heart Foundation and Pharmacosmos.</p

    Recommendations for the appropriate use of anti-inflammatory drugs in the era of the coxibs: Defining the role of gastroprotective agents

    Get PDF
    Treatment with anti-inflammatory drugs and the analgesic efficacy of conventional nonsteroidal anti-inflammatory drugs (NSAIDs) are compromised by a two-to fourfold increased risk of gastrointestinal complications. This increased risk has resulted in an increasing use of the new selective cyclooxygenase-2 inhibitors or coxibs, which, in clinical trials and outcomes studies, reduced gastrointestinal adverse events by 50% to 65% compared with conventional NSAIDs. However, the coxibs are not available to all patients who need them, and NSAIDs are still widely used. Moreover, treatment with a coxib cannot heal preexisting gastrointestinal lesions, and cotherapy with an antisecretory drug or mucosal protective agent may be required. This paper addresses the management of patients with risk factors for gastrointestinal complications who are taking NSAIDs and makes recommendations for the appropriate use of &apos;gastroproteccontinued on next pag

    The Pace of Prostatic Intraepithelial Neoplasia Development Is Determined by the Timing of Pten Tumor Suppressor Gene Excision

    Get PDF
    Loss of the PTEN tumor suppressor is a common occurrence in human prostate cancer, particularly in advanced disease. In keeping with its role as a pivotal upstream regulator of the phosphatidylinositol 3-kinase signaling pathway, experimentally-induced deletion of Pten in the murine prostate invariably results in neoplasia. However, and unlike humans where prostate tumorigenesis likely evolves over decades, disease progression in the constitutively Pten deficient mouse prostate is relatively rapid, culminating in invasive cancer within several weeks post-puberty. Given that the prostate undergoes rapid androgen-dependent growth at puberty, and that Pten excisions during this time might be especially tumorigenic, we hypothesized that delaying prostate-specific Pten deletions until immediately after puberty might alter the pace of tumorigenesis. To this end we generated mice with a tamoxifen-inducible Cre recombinase transgene enabling temporal control over prostate-specific gene alterations. This line was then interbred with mice carrying floxed Pten alleles. Despite evidence of increased Akt/mTOR/S6K axis activity at early time points in Pten-deficient epithelial cells, excisions induced in the post-pubertal (6 wk-old) prostate yielded gradual acquisition of a range of lesions. These progressed from pre-malignant changes (nuclear atypia, focal hyperplasia) and low grade prostatic intraepithelial neoplasia (PIN) at 16–20 wks post-tamoxifen exposure, to overtly malignant lesions by ∼1 yr of age, characterized by high-grade PIN and microinvasive carcinoma. In contrast, when Pten excisions were triggered in the pre-pubertal (2 week-old) prostate, neoplasia evolved over a more abbreviated time-frame, with a spectrum of premalignant lesions, as well as overt PIN and microinvasive carcinoma by 10–12 wks post-tamoxifen exposure. These results indicate that the developmental stage at which Pten deletions are induced dictates the pace of PIN development

    Stem cell-derived macrophages as a new platform for studying host-pathogen interactions in livestock

    Get PDF
    BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12915-021-01217-8
    corecore