121 research outputs found

    A Novel Intravital Method to Evaluate Cerebral Vasospasm in Rat Models of Subarachnoid Hemorrhage: A Study with Synchrotron Radiation Angiography

    Get PDF
    Precise in vivo evaluation of cerebral vasospasm caused by subarachnoid hemorrhage has remained a critical but unsolved issue in experimental small animal models. In this study, we used synchrotron radiation angiography to study the vasospasm of anterior circulation arteries in two subarachnoid hemorrhage models in rats. Synchrotron radiation angiography, laser Doppler flowmetry-cerebral blood flow measurement, [125I]N-isopropyl-p-iodoamphetamine cerebral blood flow measurement and terminal examinations were applied to evaluate the changes of anterior circulation arteries in two subarachnoid hemorrhage models made by blood injection into cisterna magna and prechiasmatic cistern. Using synchrotron radiation angiography technique, we detected cerebral vasospasm in subarachnoid hemorrhage rats compared to the controls (p<0.05). We also identified two interesting findings: 1) both middle cerebral artery and anterior cerebral artery shrunk the most at day 3 after subarachnoid hemorrhage; 2) the diameter of anterior cerebral artery in the prechiasmatic cistern injection group was smaller than that in the cisterna magna injection group (p<0.05), but not for middle cerebral artery. We concluded that synchrotron radiation angiography provided a novel technique, which could directly evaluate cerebral vasospasm in small animal experimental subarachnoid hemorrhage models. The courses of vasospasm in these two injection models are similar; however, the model produced by prechiasmatic cistern injection is more suitable for study of anterior circulation vasospasm

    PROPER: global protein interaction network alignment through percolation matching

    Get PDF
    Background The alignment of protein-protein interaction (PPI) networks enables us to uncover the relationships between different species, which leads to a deeper understanding of biological systems. Network alignment can be used to transfer biological knowledge between species. Although different PI-network alignment algorithms were introduced during the last decade, developing an accurate and scalable algorithm that can find alignments with high biological and structural similarities among PPI networks is still challenging. Results In this paper, we introduce a new global network alignment algorithm for PPI networks called PROPER. Compared to other global network alignment methods, our algorithm shows higher accuracy and speed over real PPI datasets and synthetic networks. We show that the PROPER algorithm can detect large portions of conserved biological pathways between species. Also, using a simple parsimonious evolutionary model, we explain why PROPER performs well based on several different comparison criteria. Conclusions We highlight that PROPER has high potential in further applications such as detecting biological pathways, finding protein complexes and PPI prediction. The PROPER algorithm is available at http://proper.epfl.ch

    Intuitionistic Fuzzy Time Series Functions Approach for Time Series Forecasting

    Get PDF
    Fuzzy inference systems have been commonly used for time series forecasting in the literature. Adaptive network fuzzy inference system, fuzzy time series approaches and fuzzy regression functions approaches are popular among fuzzy inference systems. In recent years, intuitionistic fuzzy sets have been preferred in the fuzzy modeling and new fuzzy inference systems have been proposed based on intuitionistic fuzzy sets. In this paper, a new intuitionistic fuzzy regression functions approach is proposed based on intuitionistic fuzzy sets for forecasting purpose. This new inference system is called an intuitionistic fuzzy time series functions approach. The contribution of the paper is proposing a new intuitionistic fuzzy inference system. To evaluate the performance of intuitionistic fuzzy time series functions, twenty-three real-world time series data sets are analyzed. The results obtained from the intuitionistic fuzzy time series functions approach are compared with some other methods according to a root mean square error and mean absolute percentage error criteria. The proposed method has superior forecasting performance among all methods

    Color analysis of different ceramic systems

    No full text
    PubMed ID: 20478787This study compared the color properties of three different ceramic systems. Three groups of 10 specimens each were prepared: Dental porcelain alloy was used as a framework for conventional and Probond metal-ceramic systems, while glass-ceramic ingots were used as a framework for 10 samples using an all-ceramic system. For the former, dentin porcelain was applied and a ceramic veneering material was applied to the ingot frameworks. Using a dental spectrophotometer, the pre- and post-glaze color compatibility between disc specimens and A3 shade was evaluated. The Kruskal-Wallis test was used to compare color differences among groups in this study, while the Mann-Whitney U test was used to make bilateral comparisons among the three different ceramic systems. The values obtained during the dentin stage revealed a significant difference in the all-ceramic group (p 0.05). These results suggest that Probond can yield esthetically superior results in clinical applications compared to conventional ceramic systems

    Insights into Human Lck SH3 Domain Binding Specificity: Different Binding Modes of Artificial and Native Ligands

    Get PDF
    We analyzed the ligand binding specificity of the lymphocyte specific kinase (Lck) SH3 domain. We identified artificial Lck SH3 ligands using phage display. In addition, we analyzed Lck SH3 binding sites within known natural Lck SH3 binding proteins using an Lck specific binding assay on membrane-immobilized synthetic peptides. On one hand, from the phage-selected peptides, representing mostly special class I' ligands, a well-defined consensus sequence was obtained. Interestingly, a histidine outside the central polyproline motif contributes significantly to Lck SH3 binding affinity and specificity. On the other hand, we confirmed previously mapped Lck SH3 binding sites in ADAM15, HS1, SLP76, and NS5A, and identified putative Lck SH3 binding sites of Sam68, FasL, c-Cbl, and Cbl-b. Without exception, the comparatively diverse Lck SH3 binding sites of all analyzed natural Lck SH3 binding proteins emerged as class II proteins. Possible explanations for the observed variations between artificial and native ligands-which are not due to significant K(D) value differences as shown by calculating Lck SH3 affinities of artificial peptide PD1-Y(-3)R as well as for peptides comprising putative Lck SH3 binding sites of NS5A, Sos, and Sam68-are discussed. Our data suggest that phage display, a popular tool for determining SH3 binding specificity, must-at least in the case of Lck-not irrevocably mirror physiologically relevant protein-ligand interactions
    • …
    corecore