4 research outputs found

    Influence of povidone-iodine on micro-tensile bonding strength to dentin under simulated pulpal pressure

    No full text
    Abstract Background Previous studies had reported that bond strength deteriorate over time following the dentin surface pretreatment with chlorhexidine. Therefore, further investigations are needed to evaluate the effect of other materials such as povidone iodine. The purpose of this study was to investigate the effects of 10% povidone-iodine pretreatment on the resin-dentin micro-tensile bond strength of a single bond adhesive system in permanent teeth over time, and compare it with 2% chlorhexidine. Methods Flat dentin surfaces were prepared in 63 extracted permanent teeth. Teeth were randomly assigned to a 10% povidone-iodine pretreatment, a 2% chlorhexidine pretreatment, or a control group. Composite resin blocks were built up over treated surfaces under pulp pressure simulation. The prepared specimens were assigned to three storage time, 24 h, 1 week, and 2 months. Samples were vertically sectioned to obtain specimens of 0.7 to 1.2 mm2 cross-sectional area. Results No significant reduction of bond strength of povidone iodine group was found among the three storage times (p = 0.477). A significant reduction of bond strength for both chlorhexidine and control groups was found in the three storage times (p <  0.001). Conclusion Povidone iodine pretreatment of etched dentin was effective in reducing the loss of bond strength over time, while the chlorhexidine pretreatment and negative control showed significant deterioration in micro-tensile bond strength over time in permanent teeth

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P &lt; 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore