20 research outputs found

    Utilizing ultrasonic energy for reduction of free fatty acids in crude palm oil

    Get PDF
    Recently, biodiesel production from abundant bio-sources has drawn the attention of the academic and the industrial community. In this study, crude palm oil (CPO) containing 8.7% free fatty acid content (FFA) was used as raw material. Different common types of acid catalysts (sulfuric acid, methanesulfonic acid and hydrochloric acid) were optimized to investigate the catalytic activity of each acid in the pre-treatment of CPO by the esterification process. Ultrasonic energy was used for the reduction of FFA in CPO. FFA content was measured at different sonication intervals, and the optimum time was determined. Hydrochloric acid showed the highest catalytic activity in the reduction of FFA content in CPO, as well as in converting FFA to fatty acid methyl ester (FAME). From this work, it is reasonable to conclude that there is significant enhancement in the pre-treatment of oils by applying ultrasonic energy using long sonication time.Keywords: Biodiesel, crude palm oil, free fatty acids, ultrasonic energ

    Electrochemical Generation of Superoxide in Room-Temperature Ionic Liquids

    Get PDF
    We have demonstrated that superoxide ion can be generated electrochemically in room-temperature ionic-liquid solvents. In the absence of impurities, cyclic voltammetry showed that the super oxide ion is stable in these solvents. Similar superoxide ion chemistry has previously been demonstrated in volatile and environmentally suspect aprotic solvents such as dimethyl formamide and acetonitrile. However, ionic liquids are nonvolatile and should minimize the problems of secondary solvent waste. It is proposed that the resultant superoxide ion can be used to perform low temperature oxidation of wastes. Low-temperature oxidation of waste solvents can provide a much needed alternative to high-temperature waste incinerators, whose use is greatly complicated by regulatory requirements and locating suitable sites

    COSMO-RS Prediction for Choline Chloride/Urea Based Deep Eutectic Solvent: Chemical Structure and Application as Agent for Natural Gas Dehydration

    No full text
    In recent years, green solvents named deep eutectic solvents (DESs) have been found to possess significant properties and to be applicable in several technologies. Choline chloride (ChCl) mixed with urea at a ratio of 1:2 and 80 °C was the first discovered DES. In this article, chemical structure and combination mechanism of ChCl: urea based DES were investigated. Moreover, the implementation of this DES in water removal from natural gas was reported. Dehydration of natural gas by ChCl:urea shows significant absorption efficiency compared to triethylene glycol. All above operations were retrieved from COSMOthermX software. This article confirms the potential application of DESs in gas industry

    Utilizing of 1-Hexyl-1-Methyl-Pyrrolidinium Bis (Trifluoromethyl-Sulfonyl) Imide as Medium for Electrochemical Generation of Superoxide Ion-Radical

    No full text
    The superoxide ion-radical was generated and analysed electrochemically using cyclic voltammetry (CV) technique from oxygen dissolved in a room-temperature ionic liquid, 1-Hexyl-1-methyl-pyrrolidinium bis (trifluoromethylsulfonyl) imide, at atmospheric pressure. It was found that the generated superoxide ion was stable which indicates its possible use for further useful applications. ABSTRAK: Ion radikal superoksida dihasil dan dianalisa secara elektrokimia menggunakan teknik voltammetri berkitar (cyclic voltammetry (CV)) daripada oksigen yang dilarutkan dalam larutan ionik pada suhu bilik, 1-Hexyl-1-methyl-pyrrolidinium bis (trifluoromethylsulfonyl) imida, pada tekanan atmosfera. Didapati bahawa ion superoksida yang terhasil adalah stabil. Ini menunjukkan ia berkemungkinan berguna dalam aplikasi lain

    Generation of Superoxide Ion in Pyridinium, Morpholinium, Ammonium, and Sulfonium-Based Ionic Liquids and the Application in the Destruction of Toxic Chlorinated Phenols

    No full text
    Generation of superoxide ion (O<sub>2</sub><sup>•–</sup>) was carried out in four ionic liquids (ILs) having the same anion, bis­(trifluoromethylsulfonyl)­imide [N­(Tf)<sub>2</sub>]<sup>−</sup>, and different cations, N-hexylpyridinium [HPy]<sup>+</sup>, N-methoxyethyl-N-methylmorpholinium [MO1,1O2]<sup>+</sup>, N-ethyl-N,N-dimethyl-2-methoxyethylammonium [N112,1O2]<sup>+</sup>, and triethylsulfonium [S222]<sup>+</sup>. Cyclic voltammetry (CV) and chronoamperometry (CA) electrochemical techniques were used in this investigation. It was found that O<sub>2</sub><sup>•–</sup> is not stable in the [HPy]<sup>+</sup>-based IL. On the other hand, CV showed that the electrochemically generated O<sub>2</sub><sup>•–</sup> is stable in [MO1,1O2]<sup>+</sup>-, [N112,1O2]<sup>+</sup>-, and [S222]<sup>+</sup>-based ILs for the time duration of the experiment. The long-term stability of the generated O<sub>2</sub><sup>•–</sup> was then investigated by dissolving potassium superoxide (KO<sub>2</sub>) in dimethyl sulfoxide (DMSO) in the presence of the corresponding IL. It was found that ILs containing [MO1,1O2]<sup>+</sup> and [N112,1O2]<sup>+</sup> offer a promising long-term stability of O<sub>2</sub><sup>•–</sup> for various reactions to be used for several applications. However, it was found that after 2 h, about 92.5% of the generated O<sub>2</sub><sup>•–</sup> in [S222]<sup>+</sup> based IL was consumed. The diffusion coefficient and solubility of O<sub>2</sub> in the studied ILs were then determined using CV and CA techniques simultaneously. It was found that diffusion coefficients and CA steady-state currents increase with temperature increases, while the solubility of O<sub>2</sub> decreased. To our best knowledge, this is the first time that morpholinium and sulfoniumbased ILs were utilized as media for chemical and electrochemical generation of O<sub>2</sub><sup>•–</sup>. Additionally, the chemically generated O<sub>2</sub><sup>•–</sup>, by dissolving KO<sub>2</sub>, was then used for the destruction of 2,4-dichlorophenol (DCP) in [MO1,1O2]­[N­(Tf)<sub>2</sub>] under ambient conditions. The destruction percentage was higher than 98%. This work represents a novel application of the chemically generated O<sub>2</sub><sup>•–</sup> for the destruction of toxic chlorinated phenols in ILs media

    Polyethylene glycol-based deep eutectic solvents as a novel agent for natural gas sweetening.

    No full text
    Deep eutectic solvents (DESs) have received significant attention as potential extracting agents in recent years due to their favorable characteristics including low cost, easy preparation and environmentally safe starting materials. Experimentally screening for highly efficient DESs meeting various requirements for natural gas sweetening remains a challenging task. Thus, an extensive database of estimated Henry's law constants (Hi) and solubilities (xi) of CO2 in 170 different DESs at 25°C has been constructed using the COSMO-RS method to select potential DESs. Based on the COSMO-RS study, three DESs, namely tetrabutylammonium bromide (TBAB)+polyethylene glycol (PEG-8) (on a molar basis 1:4), TBAB+octanoic acid (OCT) (1:4), and methyltriphenylphosphonium bromide (MTPB)+PEG-8 (1:10), were chosen for further experimentation up to 2 bar at 25°C using a vapor-liquid equilibria (VLE) apparatus. Reliable thermophysical properties were determined experimentally, and a detailed equilibrium-based model was developed for one of the glycol-based DESs (i.e., TBAB+PEG-8 (1:4)). This information is an essential prerequisite for carrying out process simulations of natural gas sweetening plants using ASPEN PLUS. The simulation results for the proposed DES were compared to those of monoethylene glycol (MEG). Here, we find that the aqueous TBAB+PEG-8 (1:4) solvent shows ~60% lower total energy consumption and higher CO2 removal when compared to those using the MEG solvent

    Treatment of acidic palm oil for fatty acid methyl esters production

    No full text
    Acidic crude palm oil (ACPO) produced from palm oil mills with an acid value of 18 mg g−1 was considered to be a possible feedstock for biodiesel production. Due to its high acidity, conventional transesterification cannot be applied directly for biodiesel production. Methane sulphonic acid (MSA, CH3SO3H) is used to reduce the acidity prior to the alkaline transesterification reaction. The laboratory-scale experiments involved an MSA to ACPO dosage of 0.25–3.5 %, a molar ratio (methanol to ACPO) from 4: 1 to 20: 1, reaction temperature of 40–80°C, reaction time of 3–150 min, and stirrer speed of 100–500 min−1. The optimum esterification reaction conditions were 1 % of catalyst to ACPO, with a molar ratio of methanol to ACPO of 8: 1, a stirring speed of 300 min−1, for 30 min and at 60°C. Under these conditions, the FFA content was reduced from 18 mg g−1 to less than 1 mg g−1 and with a yield of 96 %. The biodiesel produced met the EN14214 standard specifications. MSA was recycled for three times without losing its activity. The biodiesel produced in a two-stage process has a low acid value (0.14 mg g−1)
    corecore