4 research outputs found

    Low Voltage-Guided Ablation of Posterior Wall Improves 5-Year Arrhythmia-Free Survival in Persistent Atrial Fibrillation

    Get PDF
    Introduction: The posterior wall (PW) has been proposed as a standard target for ablation beyond pulmonary vein antral isolation (PVI) in patients with persistent atrial fibrillation (AF). However, studies have shown inconsistent outcomes with the addition of PW ablation. The presence or absence of low voltage on the PW may explain these inconsistencies. We evaluated whether PW ablation based on the presence or absence of low voltage improves long-term arrhythmia-free outcomes. Methods: We retrospectively reviewed 5-year follow-up in 152 consecutive patients who received either standard ablation (SA) with PVI alone or PVI + PW ablation (PWA) based on physician discretion (n = 77) or voltage-guided ablation (VGA) with PVI and addition of PWA only if low voltage was present on the PW (n = 75). Results: The two groups were well matched for baseline characteristics. At 5-year follow-up, 64% of patients receiving VGA were atrial tachyarrhythmia (AT)/AF free compared to 34% receiving SA (HR 0.358 p \u3c .005). PWA had similar AF recurrence in SA and VGA groups (0.30 vs. 0.27 p = .96) but higher AT recurrence when comparing SA and VGA groups (0.39 vs. 0.15 p = .03). In multivariate analysis, both VGA and PWA predicted AF arrhythmia-free survival (HR 0.33, p = .001 and HR 0.20, p = .008, respectively). For AT, VGA predicted arrhythmia-free survival (HR 0.22, p = .028), while PWA predicted AT recurrence (HR 4.704, p = .0219). Conclusion: VGA of the posterior wall ablation beyond PVI in persistent AF significantly improves long-term arrhythmia-free survival when compared with non-voltage-guided ablation. PW ablation without voltage-guidance reduced AF recurrence but at the cost of a higher incidence of AT

    Image_1_Intercalated Disk Extracellular Nanodomain Expansion in Patients With Atrial Fibrillation.PDF

    No full text
    <p>Aims: Atrial fibrillation (AF) is the most common sustained arrhythmia. Previous evidence in animal models suggests that the gap junction (GJ) adjacent nanodomain – perinexus – is a site capable of independent intercellular communication via ephaptic transmission. Perinexal expansion is associated with slowed conduction and increased ventricular arrhythmias in animal models, but has not been studied in human tissue. The purpose of this study was to characterize the perinexus in humans and determine if perinexal expansion associates with AF.</p><p>Methods: Atrial appendages from 39 patients (pts) undergoing cardiac surgery were fixed for immunofluorescence and transmission electron microscopy (TEM). Intercalated disk distribution of the cardiac sodium channel Nav1.5, its β1 subunit, and connexin43 (C×43) was determined by confocal immunofluorescence. Perinexal width (Wp) from TEM was manually segmented by two blinded observers using ImageJ software.</p><p>Results: Nav1.5, β1, and C×43 are co-adjacent within intercalated disks of human atria, consistent with perinexal protein distributions in ventricular tissue of other species. TEM revealed that the GJ adjacent intermembrane separation in an individual perinexus does not change at distances greater than 30 nm from the GJ edge. Importantly, Wp is significantly wider in patients with a history of AF than in patients with no history of AF by approximately 3 nm, and Wp correlates with age (R = 0.7, p < 0.05).</p><p>Conclusion: Human atrial myocytes have voltage-gated sodium channels in a dynamic intercellular cleft adjacent to GJs that is consistent with previous descriptions of the perinexus. Further, perinexal width is greater in patients with AF undergoing cardiac surgery than in those without.</p

    Intercalated Disk Extracellular Nanodomain Expansion in Patients With Atrial Fibrillation

    No full text
    Aims: Atrial fibrillation (AF) is the most common sustained arrhythmia. Previous evidence in animal models suggests that the gap junction (GJ) adjacent nanodomain – perinexus – is a site capable of independent intercellular communication via ephaptic transmission. Perinexal expansion is associated with slowed conduction and increased ventricular arrhythmias in animal models, but has not been studied in human tissue. The purpose of this study was to characterize the perinexus in humans and determine if perinexal expansion associates with AF.Methods: Atrial appendages from 39 patients (pts) undergoing cardiac surgery were fixed for immunofluorescence and transmission electron microscopy (TEM). Intercalated disk distribution of the cardiac sodium channel Nav1.5, its β1 subunit, and connexin43 (C×43) was determined by confocal immunofluorescence. Perinexal width (Wp) from TEM was manually segmented by two blinded observers using ImageJ software.Results: Nav1.5, β1, and C×43 are co-adjacent within intercalated disks of human atria, consistent with perinexal protein distributions in ventricular tissue of other species. TEM revealed that the GJ adjacent intermembrane separation in an individual perinexus does not change at distances greater than 30 nm from the GJ edge. Importantly, Wp is significantly wider in patients with a history of AF than in patients with no history of AF by approximately 3 nm, and Wp correlates with age (R = 0.7, p &lt; 0.05).Conclusion: Human atrial myocytes have voltage-gated sodium channels in a dynamic intercellular cleft adjacent to GJs that is consistent with previous descriptions of the perinexus. Further, perinexal width is greater in patients with AF undergoing cardiac surgery than in those without
    corecore