20 research outputs found
Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia
<p>Abstract</p> <p>Background</p> <p>Xenobiotics are neurotoxins that dramatically alter the health of the child. In addition, an inefficient detoxification system leads to oxidative stress, gut dysbiosis, and immune dysfunction. The consensus among physicians who treat autism with a biomedical approach is that those on the spectrum are burdened with oxidative stress and immune problems. In a trial to understand the role of detoxification in the etiology of autism, selected parameters related to sulfur-dependent detoxification mechanisms in plasma of autistic children from Saudi Arabia will be investigated compared to control subjects.</p> <p>Methods</p> <p>20 males autistic children aged 3-15 years and 20 age and gender matching healthy children as control group were included in this study. Levels of reduced glutathione (GSH), total (GSH+GSSG), glutathione status (GSH/GSSG), glutathione reductase (GR), glutathione- s-transferase (GST), thioredoxin (Trx), thioredoxin reductase (TrxR) and peroxidoxins (Prxs I and III) were determined.</p> <p>Results</p> <p>Reduced glutathione, total glutathione, GSH/GSSG and activity levels of GST were significantly lower, GR shows non-significant differences, while, Trx, TrxR and both Prx I and III recorded a remarkably higher values in autistics compared to control subjects.</p> <p>Conclusion</p> <p>The impaired glutathione status together with the elevated Trx and TrxR and the remarkable over expression of both Prx I and Prx III, could be used as diagnostic biomarkers of autism.</p
Mechanism of nitrogen metabolism-related parameters and enzyme activities in the pathophysiology of autism
<p>Abstract</p> <p>Background</p> <p>There is evidence that impaired metabolism play an important role in the etiology of many neuropsychiatric disorders. Although this has not been investigated to date, several recent studies proposed that nitrogen metabolism-related parameters may have a pathophysiological role in autism.</p> <p>Methods</p> <p>The study enrolled 20 Saudi boys with autism aged 4 to 12 years and 20 healthy controls matched for age and gender. Levels of creatine, urea, ammonia, gamma-aminobutyric acid (GABA), glutamate:glutamine (Glu:Gln) ratio, and enzymatic activities of glutamate dehydrogenase, 5'-nucleotidase, and adenosine deaminase (ADA) were determined in plasma samples from both groups.</p> <p>Results</p> <p>We found a significant elevation of creatine, 5'-nucleotidase, GABA, and glutamic acid and a significant decrease in the enzymatic activity of ADA and glutamine level in patients with autism compared with healthy controls. The most significant variation between the two groups was found in the Glu:Gln ratio.</p> <p>Conclusion</p> <p>A raised Glu:Gln ratio together with positive correlations in creatine, GABA, and 5'-nucleotidase levels could contribute to the pathophysiology of autism, and might be useful diagnostic markers. The mechanism through which these parameters might be related to autism is discussed in detail.</p
Seroprevalence study of HCV Genotypes in two tertiary hospital and its association with risk factors and current management practice
The distribution of hepatitis C virus (HCV) genotypes
is well documented in many countries. However,
reliable data are still lacking with respect to the
frequency of the different HCV genotypes in
Malaysia. This study aim to identify HCV genotypes
and associated risk factors in a group of HCV infected
patients from two tertiary hospitals
Mean serum-level of common organic pollutants is predictive of behavioral severity in children with autism spectrum disorders
Autism spectrum disorders (ASD), and their pathogenesis, are growing public health concerns. This study evaluated common organic pollutant serum-concentrations in children, as it related to behavioral severity determined by rating scales and the Autism Diagnostic Observation Schedule (ADOS). Thirty children, ages 2–9, with ASD and thirty controls matched by age, sex, and socioeconomic status were evaluated using direct blood serum sampling and ADOS. Pooling concentrations of all studied pollutants into a single variable yielded cohort-specific neurobehavioral relationships. Pooled serum-concentration correlated significantly with increasing behavioral severity on the ADOS in the ASD cohort (p = 0.011, r = 0.54), but not controls (p = 0.60, r = 0.11). Logistic regression significantly correlated mean pollutant serum-concentration with the probability of diagnosis of behaviorally severe autism, defined as ADOS >14, across all participants (odds ratio = 3.43 [95% confidence: 1.14–10.4], p = 0.0287). No specific analyte correlated with ADOS in either cohort. The ASD cohort displayed greater quantitative variance of analyte concentrations than controls (p = 0.006), suggesting a wide range of detoxification functioning in the ASD cohort. This study supports the hypothesis that environmental exposure to organic pollutants may play a significant role in the behavioral presentation of autism