32 research outputs found

    Analysis of shape and location effects of closely spaced metal loss defects in pressurised pipes

    Get PDF
    Metal loss due to corrosion is a serious threat to the integrity of pressurised oil and gas transmission pipes. Pipe metal loss defects are found in either single form or in groups (clusters). One of the critical situations arises when two or more defects are spaced close enough to act as a single lengthier defect with respect to the axial direction, causing pipe ruptures rather than leaks, and impacting on the pressure containing capacity of a pipe. There have been few studies conducted to determine the distance needed for defects to interact leading to a failure pressure lower than that when the defects are treated as single defects and not interacting. Despite such efforts, there is no universally agreed defect interaction rule and pipe operators around the world have various rules to pick and choose from. In this work, the effects of defect shape and location on closely spaced defects are analysed using finite element analysis. The numerical results showed that defect shapes and locations have a great influence on the peak stress and its location as well as the failure pressure of pipes containing interacting defects

    Development of an improved structural integrity assessment methodology for pressurised pipes containing defects

    Get PDF
    Metal loss due to corrosion is a serious threat to the integrity of pressurised oil and gas transmission pipes. Pipe metal loss defects are found in either single form or in groups (clusters). One of the critical situations arises when two or more defects are spaced close enough to act as a single lengthier defect, causing major impact on the pressure containing capacity of a pipe and leading to rupture rather than localised leak at the centre of defects. There have been many studies conducted to determine the distance needed for defects to interact leading to a failure pressure lower than that when the defects are treated as single and not interacting. Despite such efforts, there is no universally agreed defect interaction rule and pipe operators around the world have various rules to pick and choose from. In this work, the effects of defect shapes and orientations on closely spaced defects are tested experimentally and further analysed using finite element analysis. Burst pressures of commonly used ductile steel pipes in the oil and gas industries, namely X52 and X60, are measured under internal pressure loading. The pipes were machined with circular and curved boxed defects at different orientations to simulate actual metal loss defects. The burst pressure results were compared with those obtained using existing analytical methods. Comparison of the results showed conservatism in the existing analytical methods which may potentially lead to unnecessary plant shutdowns and pipe repairs. A failure criterion for both single and interacting defects was proposed and validated numerically using the experimental data obtained in this research work. The numerical results when using the proposed failure criterion showed that defect shapes and orientations have a great influence on the failure pressure of pipes containing interacting defects. A simplified mathematical model based on the parametric results and relevant to the cases studied is proposed with the objective of reducing the known conservatism in the existing pipe standards when it comes to the assessment of defect interaction

    An experimental investigation of the effect of defect shape and orientation on the burst pressure of pressurised pipes

    Get PDF
    The burst pressure of commonly used ductile steel pipes in oil and gas industries, i.e. X52 and X60, is measured under internal pressure loading. The pipes were machined with circular and boxed defects at different orientations to simulate actual metal loss defects. Defect shapes and orientations were investigated in detail to study how they affect the failure behaviour of interacting defects. The experimental burst pressure results were compared with those obtained using existing analytical methods from Design Codes. Comparison of the results showed conservatism in the existing analytical methods which may potentially lead to unnecessary plant shutdowns and pipe repairs. The outcome of the experimental tests revealed that the shapes of the defects have very small influence on the defect interaction behaviour. The burst tests interestingly showed that the defect orientation has an important effect on defect interaction. Defects oriented in the hoop and diagonal directions showed no defect interaction even when spaced by a distance of one wall thickness, while defects oriented in the longitudinal directions showed that defects interact even when the spacing is up to six wall thickness but the interaction fades away for defects spaced at longer distances

    Genomic and Expression Analyses Define MUC17 and PCNX1 as Predictors of Chemotherapy Response in Breast Cancer

    Get PDF

    Development of an improved structural integrity assessment methodology for pressurised pipes containing defects

    No full text
    Metal loss due to corrosion is a serious threat to the integrity of pressurised oil and gas transmission pipes. Pipe metal loss defects are found in either single form or in groups (clusters). One of the critical situations arises when two or more defects are spaced close enough to act as a single lengthier defect, causing major impact on the pressure containing capacity of a pipe and leading to rupture rather than localised leak at the centre of defects. There have been many studies conducted to determine the distance needed for defects to interact leading to a failure pressure lower than that when the defects are treated as single and not interacting. Despite such efforts, there is no universally agreed defect interaction rule and pipe operators around the world have various rules to pick and choose from. In this work, the effects of defect shapes and orientations on closely spaced defects are tested experimentally and further analysed using finite element analysis. Burst pressures of commonly used ductile steel pipes in the oil and gas industries, namely X52 and X60, are measured under internal pressure loading. The pipes were machined with circular and curved boxed defects at different orientations to simulate actual metal loss defects. The burst pressure results were compared with those obtained using existing analytical methods. Comparison of the results showed conservatism in the existing analytical methods which may potentially lead to unnecessary plant shutdowns and pipe repairs. A failure criterion for both single and interacting defects was proposed and validated numerically using the experimental data obtained in this research work. The numerical results when using the proposed failure criterion showed that defect shapes and orientations have a great influence on the failure pressure of pipes containing interacting defects. A simplified mathematical model based on the parametric results and relevant to the cases studied is proposed with the objective of reducing the known conservatism in the existing pipe standards when it comes to the assessment of defect interaction

    GC-MS analysis, determination of total phenolics, flavonoid content and free radical scavenging activities of various crude extracts of Moringa peregrina (Forssk.) Fiori leaves

    Get PDF
    Objective: To perform phytochemical screening, estimate total phenolics, flavonoids and to evaluate antioxidant potential of Moringa peregrina (M. peregrina) leaves. Methods: The dried powdered leaves of M. peregrina (150 g) were extracted exhaustively by Soxhlet with ethanol and then fractionated into hexane, chloroform, ethy alacetate and methanol. All the prepared extracts were also analyzed by gas chromatography-mass spectrometry to identify and characterize the chemical compounds present in the crude extracts. Folin- Ciocalteu reagent and aluminium chloride colorimetric methods were used to estimate total phenolic and flavonoid content of extracts. Hydrogen peroxide and 1,1 diphenyl -2-picrylhydrazyl were used to determine in vitro antioxidant activity. Results: Phytochemical analysis of ethanol extract showed presence of major classes of phytochemicals. Gas chromatography-mass spectrometry results revealed presence of 19 phytoconstituents in hexane extract, 6 in ethyl acetate and 7 compounds in methanolic extract. Methanol extract was found to contain the highest phenolic content and flavonoids. In vitro antioxidant activities of all crude extracts were significant and comparable with the standard ascorbic acid. Conclusions: Results of this study show that the leaves of M. peregrina are the rich source of phenolic compounds that can play an important role in preventing the progression of many diseases

    Two new species of Hymenagaricus (Agaricales, Agaricaceae) from Oman, based on morphology and molecular phylogeny

    Get PDF
    Hymenagaricus has small to medium-sized mushrooms and the cap surface with squamulose pellicles, consisting of hymeniform or pseudoparenchymatous cells and yellowish-brown basidiospores. The species of Hymenagaricus are very similar to those of Xanthagaricus and it is extremely difficult to differentiate the species of both genera in the field. However, phylogenetically, both the genera are clearly distinct. In this study, we describe two new species of Hymenagaricus, i.e. H. wadijarzeezicus and H. parvulus from the southern part of Oman. Species descriptions are based on a combination of morphological characteristics of basidiomata and phylogenetic analyses of three gene regions: internal transcribed spacer (ITS1-5.8S-ITS2 = ITS), the large subunit of nuclear ribosomal DNA (28S) and translation elongation factor one alpha (EF-1α). Full descriptions, micrographs and illustration of anatomical features, basidiomata photos and phylogenetic analyses results of the new taxa are provided. Morphological comparisons of new taxa with similar species and a key to species included in the phylogenetic analyses are also provided

    In vitro detoxification of aflatoxin B1 by aqueous extracts of medicinal herbs

    No full text
    Aflatoxin contamination in food commodities is a major food safety concern all over the world. These aflatoxins are a group of carcinogenic secondary metabolites produced by some fungi belonging to Aspergillus section Flavi. To minimize the level of aflatoxins in food commodities, a wide range of pre- and post-harvest procedures have been employed. In this study, aqueous extracts of 13 medicinal herbs were assessed for their ability to detoxify aflatoxin B1 (AFB1), the most potent and commonly occurring carcinogen in foods. Among them, herbal extracts of Hybanthus enneaspermus, Eclipta prostrata and Centella asiatica exhibited over 70% detoxification of AFB1. The degradation of AFB1 upon treatment with these herbal extracts was confirmed by liquid chromatography–mass spectrometry analysis. Two fractions (Rf 0.75 and 0.87) purified from H. enneaspermus by using thin-layer chromatography displayed in vitro AFB1-detoxifying properties. Gas chromatography–mass spectrometry analysis of the active fractions revealed the presence of linalool and bornyl acetate as the major components suggesting possible involvement of volatile compounds of H. enneaspermus in the detoxification of AFB1. To our knowledge, this is the first report on the detoxification of AFB1 by H. enneaspermus, E. prostrata and C. asiatica aqueous extracts
    corecore