9 research outputs found

    Accurate spectroscopic characterization of ethyl mercaptan and dimethyl sufide isotopologues : a rute toward their astrophysical detection

    Get PDF
    Using state-of-the-art computational methodologies, we predict a set of reliable rotational and torsional parameters for ethyl mercaptan and dimethyl sulfide monosubstituted isotopologues. This includes rotational, quartic, and sextic centrifugal-distortion constants, torsional levels, and torsional splittings. The accuracy of the present data was assessed from a comparison to the available experimental data. Generally, our computed parameters should help in the characterization and the identification of these organo-sulfur molecules in laboratory settings and in the interstellar medium.This research was supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Program under grant No. PIRSES-GA-2012-31754, the COST Action CM1002 CODECS, and the FIS2011-28738-C02-02 project (MINECO, Spain). In Bologna, this work was supported by MIUR (PRIN 2012 funds under the project "STAR: Spectroscopic and computational Techniques for Astrophysical and atmospheric Research") and by the University of Bologna (RFO funds). M.L.S., M.H., and M.A.M. acknowledge the Deanship of Scientific Research at King Saud University for its funding through the Research Group RGP-VPP-333

    The furan microsolvation blind challenge for quantum chemical methods: First steps

    Get PDF
    © 2018 Author(s). Herein we present the results of a blind challenge to quantum chemical methods in the calculation of dimerization preferences in the low temperature gas phase. The target of study was the first step of the microsolvation of furan, 2-methylfuran and 2,5-dimethylfuran with methanol. The dimers were investigated through IR spectroscopy of a supersonic jet expansion. From the measured bands, it was possible to identify a persistent hydrogen bonding OH-O motif in the predominant species. From the presence of another band, which can be attributed to an OH-π interaction, we were able to assert that the energy gap between the two types of dimers should be less than or close to 1 kJ/mol across the series. These values served as a first evaluation ruler for the 12 entries featured in the challenge. A tentative stricter evaluation of the challenge results is also carried out, combining theoretical and experimental results in order to define a smaller error bar. The process was carried out in a double-blind fashion, with both theory and experimental groups unaware of the results on the other side, with the exception of the 2,5-dimethylfuran system which was featured in an earlier publication

    The first microsolvation step for furans : new experiments and benchmarking strategies

    Get PDF
    The site-specific first microsolvation step of furan and some of its derivatives with methanol is explored to benchmark the ability of quantum-chemical methods to describe the structure, energetics, and vibrational spectrum at low temperature. Infrared and microwave spectra in supersonic jet expansions are used to quantify the docking preference and some relevant quantum states of the model complexes. Microwave spectroscopy strictly rules out in-plane docking of methanol as opposed to the top coordination of the aromatic ring. Contrasting comparison strategies, which emphasize either the experimental or the theoretical input, are explored. Within the harmonic approximation, only a few composite computational approaches are able to achieve a satisfactory performance. Deuteration experiments suggest that the harmonic treatment itself is largely justified for the zero-point energy, likely and by design due to the systematic cancellation of important anharmonic contributions between the docking variants. Therefore, discrepancies between experiment and theory for the isomer abundance are tentatively assigned to electronic structure deficiencies, but uncertainties remain on the nuclear dynamics side. Attempts to include anharmonic contributions indicate that for systems of this size, a uniform treatment of anharmonicity with systematically improved performance is not yet in sight

    Optically Pumped Intensive Light Amplification from a Blue Oligomer

    No full text
    We demonstrated the time-resolved dynamics of laser action from the conductive oligomer (CO) 1,4-Bis(9-ethyl-3-carbazo-vinylene)-9,9-dihexyl-fluorene (BECV-DHF). Absorption and fluorescence spectra were studied for BECV-DHF in different solvents under a wide range of concentrations. The Fourier-transform infrared spectroscopy (FTIR) spectrum was measured using simulation and experiments. The Ultraviolet-Visible (UV-VIS) spectra of the BECV-DHF were simulated in two different solutions. This CO formed a dimer and had two vibration bands in nonpolar solvents, partially dissolved in polar protic solvents, and created an H-type aggregate in polar aprotic solvents. BECV-DHF produced amplified spontaneous emission (ASE) at 464 nm in many solvents. The high efficiency of ASE is due to the waveguiding and self-assembly nature of the oligomer, which is very rare for optically pumped systems. However, BECV-DHF did not produce ASE in polar protic solvents. BECV-DHF produced ASE in both longitudinal and transverse pumping, and the full-width half maximum (FWHM) was 4 nm and 8 nm respectively for different solvents, such as toluene and acetone. The CO had a very low threshold pump energy (~0.5 mJ). The ASE efficiency was approximately 20%. The time-resolved spectroscopy (TRS) studies showed a temporal Gaussian-shaped ASE output from this CO. BECV-DHF shows remarkably high stability compare to the conjugated polymer (CP) PFO-co-pX
    corecore