22 research outputs found

    Potential of organic amendments for heavy metal contamination in soil–coriander system: environmental fate and associated ecological risk

    Get PDF
    Pollution by organic wastes and manures is an important problem in tropical and sub-tropical countries and novel solutions for their proper management and valorization are needed. Waste-derived organic manures may increase metal load in the soil–plant ecosystem and food chain, with potential risks to public health. The aim of this work was to evaluate the impact of three manures (poultry waste (PW), press mud (PM), and farmyard manure (FYM)) on heavy metals (HMs) (Cd, Co, Cr, Cu, Pb, Zn, Fe, Mn) toxicity in a soil and coriander (Coriandrum sativum L.) system and their environmental impact (bioaccumulation, pollution load) and the consequent risk to human health via consumption. Results demonstrated that HMs in coriander fluctuated from 0.40 to 0.43 for Cd, 1.84 to 3.52 for Co, 0.15 to 0.16 for Cr, 1.32 to 1.40 for Cu, 0.05 to 0.09 for Pb, 1.32 to 2.51 for Fe, 0.10 to 0.32 for Mn, and 2.01 to 8.70 mg/kg for Zn, respectively. Highest pollution load index value was 2.89 for Cd and Mn showed the lowest (0.005). Daily intake of metal was noticed to be higher for Zn (0.049 mg/kg/day) for PW and lower for Mn (0.0005) at FYM treatment. The health risk index value was <1 and in the range of 2.30–2.50 for Cd showing potential carcinogenicity. It was concluded that as the organic amendments have the widest application in vegetables, it should be prudent to avoid their contamination and mobilization in plant–soil ecosystems to protect public health perspectives.King Saud University | Ref. RSP-2021/21

    Assessing Molecular Signature for Some Potential Date (Phoenix dactylifera L.) Cultivars from Saudi Arabia, Based on Chloroplast DNA Sequences rpoB and psbA-trnH

    Get PDF
    Phoenix dactylifera L. (date palm), being economically very important, is widely cultivated in the Middle East and North Africa, having about 400 different cultivars. Assessment of date cultivars under trading and farming is a widely accepted problem owing to lack of a unique molecular signature for specific date cultivars. In the present study, eight different cultivars of dates viz., Khodry, Khalas, Ruthana, Sukkari, Sefri, Segae, Ajwa and Hilali were sequenced for rpoB and psbA-trnH genes and analyzed using bioinformatics tools to establish a cultivar-specific molecular signature. The combined aligned data matrix was of 1147 characters, of which invariable and variable sites were found to be 958 and 173, respectively. The analysis clearly reveals three major groups of these cultivars: (i) Khodary, Sefri, Ajwa, Ruthana and Hilali (58% BS); (ii) Sukkari and Khalas (64% BS); and (iii) Segae. The economically most important cultivar Ajwa showed similarity with Khodary and Sefri (67% BS).The sequences of the date cultivars generated in the present study showed bootstrap values between 38% and 70% so these sequences could be carefully used as molecular signature for potential date cultivars under trading and selection of genuine cultivars at the seedling stage for farming

    Synthesis and characterization of polypyrrole decorated graphene/β-cyclodextrin composite for low level electrochemical detection of mercury (II) in water

    Get PDF
    Mercury (Hg(II)) is considered as one of the most toxic element that directly affects the human health and the environment. Therefore, in this study, we propose a sensitive and disposable electrochemical sensor for the detection of Hg(II) in various water samples using polypyrrole (PPy) decorated graphene/-cyclodextrin (GR-CD) composite modified screen-printed carbon electrode (SPCE). The GRCD/PPy composite was synthesized by chemical oxidation of PPy monomer in GR-CD solution using FeCl3. Differential pulse voltammetry (DPV) is used for the detection of Hg(II) and the DPV results reveal that GR-CD/PPy composite modified SPCE has high sensitivity towards Hg(II) than bare, GR, GR-CD and PPy modified SPCEs. The optimization studies such as effect of pH, accumulating time and effect of scanning potential towards the detection of Hg(II) were investigated. The GR-CD/PPy composite modified SPCE could detect the Hg(II) up to 51.56 M L−1 with the limit of detection (LOD) of 0.47 nM L−1. The obtained LOD was well below the guideline level of Hg(II) set by the World’s Health Organization (WHO) and U.S. Environmental Protection Agency (EPA). In addition, the fabricated GR-CD/PPy composite modified SPCE selectively detected the Hg(II) in the presence of potentially interfering metal cations

    Protective Effect of Capparis spinosa Extract against Potassium Bromate Induced Oxidative Stress and Genotoxicity in Mice

    No full text
    Despite the commercial value of potassium bromate (KBrO3), it has been linked to many diseases including cancer. Capparis spinosa possesses exceptional ethnobotanical, pharmaceutical, and economic prominence by virtue of its bioactive components. The present study was designed to explore the protective role and antioxidant potential of ethanolic leaves extract of C. spinosa against the oxidative stress, genotoxicity, and apoptosis induced by KBrO3 in an experimental animal model. The results of the study revealed remarkable diminution in the levels of oxidative stress in all the treatment groups. C. spinosa extract attenuated the toxic effects of KBrO3 significantly (p < 0.05) in a time- and dose-dependent manner by restoring the normal levels of ROS and antioxidative enzymes in serum and liver tissues. The extract also abolished the oxidative DNA damage as it was evident in decreased frequency of micronuclei. A marked increase in viable cells was observed in annexin-V apoptosis assay. In conclusion, the findings of the present study demonstrate that ethanolic leaves extract of C. spinosa has considerable protective effects against KBrO3-induced toxicity in experimental mice which is attributed to its antioxidant activity. Therefore, leaves of C. spinosa could be used as a potential source of natural antioxidant and bioactive compounds

    New Margin-Based Biochar for Removing Hydrogen Sulfide Generated during the Anaerobic Wastewater Treatment

    No full text
    The present research concerns the development of a new device and process intended for the purification and treatment of sulfurous elements, and more particularly, of hydrogen sulfide (H2S) from the biogas produced at the time of the anaerobic fermentation in the purification stations. The controlled dumps or any other unit are likely to produce biogas with concentrations of H2S harmful to the operation of the machines for the valorization of the produced biogas or deodorization. This device uses new biochar from a mixture of dehydrated digested sludge from sewage treatment plants and margins from traditional crushing units, followed by biological treatment in a liquid medium at a controlled temperature. The liquid medium is based on a margin (nutrient) with culture support (large granules of biochar) in suspension by the injection under the pressure of biogas coming from the biochar filter. Physico-chemical characterization of the biochar and a test practiced on the new device of raw biogas treatment were realized. The results showed that the newly synthesized biochar has a low specific surface and a highly undeveloped porosity. The spectrum corresponding to the images of the biochar reveals the presence of C, O, N, Al, Si, P, and Fe, as significant elements with the following respective percentages: 37.62%, 35.78%, 1.87%, 4.26%, 7.33%, 8.56%, and 4.58%. It is important to note that the C content of the biochar thus synthesized found by EDX is quite comparable to that estimated from ATG. Biogas treatment test results on the prototype object of the invention eliminated 97% of the H2S from the biogas produced

    A novel triterpenoid 16-hydroxy betulinic acid isolated from Mikania cordata attributes multi-faced pharmacological activities

    No full text
    The aerial parts of extensively used ethnomedicinal plant Mikania cordata (Burm. f.) Robinson growing wild in Bangladesh were investigated to isolate and characterize compounds responsible for the bioactivities of the plant. In the present study, a new derivatives of betulinic acid, 16-hydroxy betulinic acid [3β,16-dihydroxy-lup-20(29)-en-28-oic] was isolated and the structure of the compound was determined by NMR spectroscopic means and comparing with available literature data. The isolated compound was then investigated for different pharmacological activities including antibacterial, antifungal, analgesic, anti-inflammatory and antipyretic potential employing different methods. The compound showed potent antibacterial activity with inhibition zone of diameter ranging from 12.0 to 17.5 mm and antifungal activity with mycelial growth inhibition ranging from 37.6 to 54.5%. The MIC values for antibacterial and antifungal activities ranged from 31.5–125 and 250–1000 μg/mL respectively. The compound (50 and 100 mg/kg body weight) showed potent peripheral and central analgesic activity with 55.19% and 41% of writhing inhibition at 90 min after administration of the compound and the highest 55.98%, 79.18% elongation of reaction time, respectively. In anti-inflammatory activity screening, the compound (100 mg/kg b.w.) revealed the highest 77.08% edema inhibition at 4 h after administration of carrageenan. In antipyretic assay, 16-hydroxy betulinic acid displayed a strong antipyretic effect in yeast-induced rats. From the present study it is apparent that 16-hydroxy betulinic acid might play vital role to establish M. cordata as ethnomedicinal plant to treat wound, cuts and fever. Keywords: Mikania cordata, 16-hydroxy betulinic acid, Antimicrobial, Analgesic, Anti-inflammatory, Antipyretic potentia

    New Margin-Based Biochar for Removing Hydrogen Sulfide Generated during the Anaerobic Wastewater Treatment

    No full text
    The present research concerns the development of a new device and process intended for the purification and treatment of sulfurous elements, and more particularly, of hydrogen sulfide (H2S) from the biogas produced at the time of the anaerobic fermentation in the purification stations. The controlled dumps or any other unit are likely to produce biogas with concentrations of H2S harmful to the operation of the machines for the valorization of the produced biogas or deodorization. This device uses new biochar from a mixture of dehydrated digested sludge from sewage treatment plants and margins from traditional crushing units, followed by biological treatment in a liquid medium at a controlled temperature. The liquid medium is based on a margin (nutrient) with culture support (large granules of biochar) in suspension by the injection under the pressure of biogas coming from the biochar filter. Physico-chemical characterization of the biochar and a test practiced on the new device of raw biogas treatment were realized. The results showed that the newly synthesized biochar has a low specific surface and a highly undeveloped porosity. The spectrum corresponding to the images of the biochar reveals the presence of C, O, N, Al, Si, P, and Fe, as significant elements with the following respective percentages: 37.62%, 35.78%, 1.87%, 4.26%, 7.33%, 8.56%, and 4.58%. It is important to note that the C content of the biochar thus synthesized found by EDX is quite comparable to that estimated from ATG. Biogas treatment test results on the prototype object of the invention eliminated 97% of the H2S from the biogas produced

    In Vitro Study of the Phytochemical Composition and Antioxidant, Immunostimulant, and Hemolytic Activities of Nigella sativa (Ranunculaceae) and Lepidium sativum Seeds

    No full text
    The Moroccan flora abounds and is an important reserve of medicinal plants. Nigella sativa and Lepidium sativum are plants that are widely used in traditional medicine for their multiple therapeutic properties. The current study aims to highlight the biological activities that can justify and valorize the use of these plants. Flavonoids, total phenols, condensed tannins, and sugars were determined. The biological activities tested were antioxidant by determining the IC50 (defined as the concentration of an antioxidant required to decrease the initial concentration by 50%; inversely related to the antioxidant capacity), hemagglutination, and hemolytic activities. Phytochemical quantification of the seed extracts indicated that the total phenol content was largely similar for both plants and in the order of 10 mg GAE (Gallic acid equivalent)/g. On the other hand, L. sativum seeds registered a higher content of flavonoids (3.09 &plusmn; 0.04 mg QE (quercetin equivalent)/g) as compared to Nigella saliva (0.258 &plusmn; 0.058). Concerning condensed tannins, N. saliva seeds present a higher amount with a value of 7.2 &plusmn; 0.025 mg/g as compared to L. sativum (1.4 &plusmn; 0.22 mg/g). Concerning the total sugar content, L. sativum shows a higher content (67.86 &plusmn; 0.87 mg/g) as compared to N. sativa (58.17 &plusmn; 0.42 mg/g); it is also richer in mucilage with a content of 240 mg as compared to 8.2 mg for N. saliva. Examination of the antioxidant activity using a DPPH (2.2-diphenyl 1-pycrilhydrazyl) test revealed that the EButOH (n-butanol extract) and EAE (ethyl acetate extract) extracts were the most active, with IC50 values of 48.7 and 50.65 &mu;g/mL for the N. sativa extracts and 15.7 and 52.64 &mu;g/mL for the L. sativum extracts, respectively. The results of the hemagglutination activity of the different extracts of the two plants prepared in the PBS (phosphate-buffered saline) medium showed significant agglutination for the L. sativum extract (1/50) compared to the N. sativa extract (1/20). An evaluation of the hemolytic effect of the crude extract of the studied seeds on erythrocytes isolated from rat blood incubated in PBS buffer compared to the total hemolysis induced by distilled water showed a hemolysis rate of 54% for Nigella sativa and 34% for L. sativum. In conclusion, the two plants studied in the current work exhibited high antioxidant potential, which could explain their beneficial properties

    Study of Codon Usage Patterns and Influencing Factors in Rice Yellow Mottle Virus Based on Coding Sequence Data

    No full text
    Rice yellow mottle virus (RYMV), transmitted by chrysomelids, is one of the major viral pathogens that has devastated rice production in Sub-Saharan Africa. RYMV is a member of the genus Sobemoviruses in the family Solemoviridae and harbors a positive-sense single-stranded RNA (+ssRNA). Here, we used 50 RYMV strains, applying the codon usage bias (CUB). Both base content and relative synonymous codon usage (RSCU) analysis revealed that GC-ended codons were more frequently used in the genome of RYMV. Further low codon usage bias was observed from the effective number of codons (ENC) value. The neutrality plot analysis suggested the dominant factor of natural selection was involved in the structuring of CUB in RYMV. Based on RSCU values, the RYMV and its host relationship indicate that the RYMV develops codon usage patterns similar to its host. Generally, both natural selection and mutational pressure impact the codon usage pattern of the protein-coding genes in RYMV. This study is important because it characterized the codon usage pattern in the RYMV genomes and provided the necessary data for a basic evolutionary study on them. Additionally, we recommend that experiments such as whole genome sequencing (WGS) or dual RNA sequencing (DRS) should be considered in order to correlate these in-silico findings with viral diseases in the future

    Morphological, pathogenic and genetic diversity in Diplodia seriata associated with black rot canker of apple in India

    No full text
    Abstract Apple cankers are extremely destructive diseases threatening the global apple industry through direct and indirect losses. The population structure of the pathogens is of paramount significance for the development of efficient management strategies. Therefore, phenotypic, pathogenic, and genetic diversity of Diplodia seriata causing black rot canker of apple was investigated in this study. All the isolates were included for investigating the in vitro mycelial growth, conidial dimensions, and pathogenic variability on two-year-old potted apple seedlings. The ISSR approach was used to investigate the molecular diversity of D. seriata. Mycelial growth rates were found to vary significantly amongst the isolates; however, there were no major variations seen between the different geographical groupings of isolates. Pathogenicity tests revealed variations in the size of cankers among the isolates indicating the presence of virulence variability. The isolates were segregated into three virulence groups based on canker length. The Bayesian analyses of ISSR data divided the isolates into two genetic clusters. The genetic clustering of the isolates revealed no relationship with geographical origin of the isolates. Furthermore, no direct relationship of genetic clustering was observed with morphological or pathogenic variability. The ISSR primers revealed very high level of variability in D. seriata; however, no distinct populations of the pathogen existed which is an indication of high level of gene flow between the diverse geographical populations. According to our knowledge, this is the first thorough investigation on the diversity of D. seriata associated with apple black rot canker in India
    corecore