67 research outputs found

    Utilization of Uncrewed Aircraft Systems Towards Investigating the Structure of the Atmospheric Surface Layer

    Get PDF
    This study presents two approaches to investigate the surface-layer structure during the morning transition using uncrewed aircraft systems. The first approach employs three uncrewed aircraft systems- each equipped with a single multi-hole probe- simultaneously measuring horizontal transects were partnered with a fourth measuring vertical profiles during two consecutive mornings as part of the 2017 Collaboration Leading Operational Unmanned Aerial System Development for Meteorology and Atmospheric Physics (CLOUDMAP) measurement campaign near Stillwater, Oklahoma, U.S.A. Data were analyzed to extract time-dependent single-point statistics of kinematic and thermodynamic variables from the uncrewed aircraft systems. In addition, an approach is presented by which multi-point spatial statistics in the form of auto- and cross-correlations could be calculated from the measurements. The second approach employs two fixed-wing uncrewed aircraft systems simultaneously flying horizontal transects with a third rotorcraft uncrewed aircraft system for vertical profiling during a limited deployment at the University of Kentucky North Research Farm (UKNRF), Lexington, U.S.A. The first fixed-wing aircraft is equipped with a custom-built multi-hole-probe-based vorticity probe. The configuration of the vorticity probe allows the estimation of the velocity and small-scale velocity gradients. These gradients are employed to estimate the dissipation rate and vorticity fields which can be used for identifying and characterizing the atmospheric boundary layer structure. The second fixed-wing aircraft is equipped with a single multi-hole probe used to resolve the advection velocity of coherent structures which can be used to approximate the streamwise spatial flow field using frozen Taylor’s hypothesis. The results from the first approach during CLOUDMAP campaign reflect differences in the evolution of spatial statistics with altitude for each of the two days at scales smaller than 500 m, despite very similar synoptic conditions. Conditional averaging was also applied to identify the structure of sweep and ejection motions and results revealed similarities to observations from canonical wall-bounded flow. Whereas, the results from the UKNRF campaign reveal the ability of the vorticity probe to estimate the dissipation rate flow field even though the spatial separation between the probes is much larger than Kolmogorov length scale. The mean dissipation rate estimated from the vorticity probe showed good agreement with the dissipation rate estimated based on Kolmogorov theory from the streamwise power spectrum. Additionally, the instantaneous dissipation rate flow field had signatures, represented by intermittent intense regions, associated with coherent structures which align with similar signatures in the flow fields of the vorticity and virtual temperature fluctuations. The observed structures have spatial length scales in the order of 200 m. Additionally, the spatial extent of the detected coherent structures, as well as the results from the conditional averaging of sweep and ejection events, imply that these regions could correspond to either low-momentum streaks, that evolve to form the legs of hairpin vortices, or the hairpin vortices legs. Finally, the observed average flow structure of different atmospheric quantities during the three flights has characteristics associated with coherent structures similar to what was observed previously in the atmospheric surface layer and in canonical wall-bounded flows

    Clinical evaluation of stretchable and wearable inkjet-printed strain gauge sensor for respiratory rate monitoring at different body postures

    Get PDF
    Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement which is difficult and still under investigation. The present study investigates and evaluates a stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously by detecting the respiratory volume change in the chest area. As the volume change could cause different strain changes at different body postures, this study aims to investigate the accuracy of the IJP RR sensor at selected postures. The evaluation was performed twice on 15 healthy male subjects (mean ± SD of age: 24 ± 1.22 years). The RR was simultaneously measured in breaths per minute (BPM) by the IJP RR sensor and a reference RR sensor (e-Health nasal thermal sensor) at each of the five body postures namely standing, sitting at 90°, Flower’s position at 45°, supine, and right lateral recumbent. There was no significant difference in measured RR between IJP and reference sensors, between two trials, or between different body postures (all p \u3e 0.05). Body posture did not have any significant effect on the difference of RR measurements between IJP and the reference sensors (difference \u3c 0.01 BPM for each measurement in both trials). The IJP sensor could accurately measure the RR at different body postures, which makes it a promising, simple, and user-friendly option for clinical and daily uses

    Techno-economic comparative analysis of renewable energy systems: Case study in Zimbabwe

    Get PDF
    Fluctuations in fossil fuel prices significantly affect the economies of countries, especially oil-importing countries, hence these countries are thoroughly investigating the increase in the utilization of renewable energy resources as it is abundant and locally available in all the countries despite challenges. Renewable energy systems (RES) such as solar and wind systems offer suitable alternatives for fossil fuels and could ensure the energy security of countries in a feasible way. Zimbabwe is one of the African countries that import a significant portion of its energy needs which endanger the energy security of the country. Several studies in the literature discussed the feasibility of different standalone and hybrid RES either with or without energy storage systems to either maximize the technical feasibility or the economic feasibility; however, none of the studies considered maximizing both feasibilities at the same time. Therefore, we present a techno-economic comparison of standalone wind and solar photovoltaic (PV) in addition to hybrid PV/wind systems based on maximizing the RES fraction with levelized cost of electricity (LCOE) being less than or equal to the local grid tariff where Gwanda, Zimbabwe, is the case study. The methodology suggested in this study could increase the utilization of renewable energy resources feasibly and at the same time increase the energy security of the country by decreasing dependency on imported energy. The results indicate that the PV/wind hybrid system does not only have the best economic benefits represented by the net present value (NPV) and the payback period (PBP), but also the best technical performance; where the maximum feasible size of the hybrid system-2 MW wind and 1 MW PV-has RES fraction of 65.07%, LCOE of 0.1 USD/kWh, PBP of 3.94 years, internal rate of return of 14.04% and NPV of 3.06 × 106 USD. Having similar systems for different cities in Zimbabwe will decrease the energy bill significantly and contribute toward the energy security of the country

    Techno-economic comparative analysis of renewable energy systems: Case study in Zimbabwe

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Fluctuations in fossil fuel prices significantly affect the economies of countries, especially oil-importing countries, hence these countries are thoroughly investigating the increase in the utilization of renewable energy resources as it is abundant and locally available in all the countries despite challenges. Renewable energy systems (RES) such as solar and wind systems offer suitable alternatives for fossil fuels and could ensure the energy security of countries in a feasible way. Zimbabwe is one of the African countries that import a significant portion of its energy needs which endanger the energy security of the country. Several studies in the literature discussed the feasibility of different standalone and hybrid RES either with or without energy storage systems to either maximize the technical feasibility or the economic feasibility; however, none of the studies considered maximizing both feasibilities at the same time. Therefore, we present a techno-economic comparison of standalone wind and solar photovoltaic (PV) in addition to hybrid PV/wind systems based on maximizing the RES fraction with levelized cost of electricity (LCOE) being less than or equal to the local grid tariff where Gwanda, Zimbabwe, is the case study. The methodology suggested in this study could increase the utilization of renewable energy resources feasibly and at the same time increase the energy security of the country by decreasing dependency on imported energy. The results indicate that the PV/wind hybrid system does not only have the best economic benefits represented by the net present value (NPV) and the payback period (PBP), but also the best technical performance; where the maximum feasible size of the hybrid system-2 MW wind and 1 MW PV-has RES fraction of 65.07%, LCOE of 0.1 USD/kWh, PBP of 3.94 years, internal rate of return of 14.04% and NPV of 3.06 × 106 USD. Having similar systems for different cities in Zimbabwe will decrease the energy bill significantly and contribute toward the energy security of the country

    Evaluation of the Accuracy of Different PV Estimation Models and the Effect of Dust Cleaning: Case Study a 103 MW PV Plant in Jordan

    Get PDF
    The estimation of PV production has been widely investigated previously, where many empirical models have been proposed to account for wind and soiling effects for specific locations. However, the performance of these models varies among the investigated sites. Hence, it is vital to assess and evaluate the performance of these models and benchmark them against the common PV estimation model that accounts only for the ambient temperature. Therefore, this study aims to evaluate the accuracy and performance of four empirical wind models considering the soiling effect, and compare them to the standard model for a 103 MW PV plant in Jordan. Moreover, the study investigates the effect of cleaning frequency on the annual energy production and the plant’s levelized cost of electricity (LCOE). The results indicate almost identical performance for the adopted models when comparing the actual energy production with R2 and RMSE (root mean square error) ranges of 0.93–0.98 and 0.93–1.56 MWh for both sub-plants, with a slight superiority of the models that incorporate wind effect. Finally, it is recommended in this study to clean the PV panels every two weeks instead of every three months, which would increase annual energy production by 4%, and decrease the LCOE by 5% of the two PV sub-plants

    Techno-Economic Comparative Analysis of Renewable Energy Systems: Case Study in Zimbabwe

    Get PDF
    Fluctuations in fossil fuel prices significantly affect the economies of countries, especially oil-importing countries, hence these countries are thoroughly investigating the increase in the utilization of renewable energy resources as it is abundant and locally available in all the countries despite challenges. Renewable energy systems (RES) such as solar and wind systems offer suitable alternatives for fossil fuels and could ensure the energy security of countries in a feasible way. Zimbabwe is one of the African countries that import a significant portion of its energy needs which endanger the energy security of the country. Several studies in the literature discussed the feasibility of different standalone and hybrid RES either with or without energy storage systems to either maximize the technical feasibility or the economic feasibility; however, none of the studies considered maximizing both feasibilities at the same time. Therefore, we present a techno-economic comparison of standalone wind and solar photovoltaic (PV) in addition to hybrid PV/wind systems based on maximizing the RES fraction with levelized cost of electricity (LCOE) being less than or equal to the local grid tariff where Gwanda, Zimbabwe, is the case study. The methodology suggested in this study could increase the utilization of renewable energy resources feasibly and at the same time increase the energy security of the country by decreasing dependency on imported energy. The results indicate that the PV/wind hybrid system does not only have the best economic benefits represented by the net present value (NPV) and the payback period (PBP), but also the best technical performance; where the maximum feasible size of the hybrid system-2 MW wind and 1 MW PV-has RES fraction of 65.07%, LCOE of 0.1 USD/kWh, PBP of 3.94 years, internal rate of return of 14.04% and NPV of 3.06 × 106 USD. Having similar systems for different cities in Zimbabwe will decrease the energy bill significantly and contribute toward the energy security of the country

    An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand

    Get PDF
    Renewable microgrids are new solutions for enhanced security, improved reliability and boosted power quality and operation in power systems. By deploying different sources of renewables such as solar panels and wind units, renewable microgrids can enhance reducing the greenhouse gasses and improve the efficiency. This paper proposes a machine learning based approach for energy management in renewable microgrids considering a reconfigurable structure based on remote switching of tie and sectionalizing. The suggested method considers the advanced support vector machine for modeling and estimating the charging demand of hybrid electric vehicles (HEVs). In order to mitigate the charging effects of HEVs on the system, two different scenarios are deployed; one coordinated and the other one intelligent charging. Due to the complex structure of the problem formulation, a new modified optimization method based on dragonfly is suggested. Moreover, a self-adaptive modification is suggested, which helps the solutions pick the modification method that best fits their situation. Simulation results on an IEEE microgrid test system show its appropriate and efficient quality in both scenarios. According to the prediction results for the total charging demand of the HEVs, the mean absolute percentage error is 0.978, which is very low. Moreover, the results show a 2.5% reduction in the total operation cost of the microgrid in the intelligent charging compared to the coordinated scheme

    Optimization of Geometry Parameters of Inkjet-Printed Silver Nanoparticle Traces on PDMS Substrates Using Response Surface Methodology

    Get PDF
    Inkjet printing is an emerging technology with key advantages that make it suitable for the fabrication of stretchable circuits. Specifically, this process is cost-effective and less complex compared to conventional fabrication technologies. Inkjet printing has several process and geometry parameters that significantly affect the electromechanical properties of the printed circuits. This study aims to optimize the geometry parameters of inkjet-printed silver nanoparticle traces on plasma-treated polydimethylsiloxane (PDMS) substrates. The optimization process was conducted for two printed shapes, namely straight line and horseshoe patterns. The examined input factors for the straight line traces were: the number of inkjet-printed layers and line width. On the other hand, the number of cycles and amplitude were the examined input parameters for the horseshoe shape. First, the optimal number of layers and line width were found from the straight line analysis and subsequently were used in the optimization of the horseshoe pattern parameters. The optimization of the input parameters was carried out using the response surface methodology (RSM), where the objective of the optimization was to maximize the breakdown strain of the traces while maximizing the gauge factor and minimizing the ink cost. The results indicate that a 1.78 mm line width and one layer are the optimal geometry parameters for the straight line traces, while for the horseshoe pattern, the optimal parameters are one layer, a line width of 1.78 mm, amplitude of 4 mm and one cycle. The optimal straight line was designed to sustain up to 10% strain while the horseshoe pattern was designed to sustain up to 15% strain

    A Demand-Supply Matching-Based Approach for Mapping Renewable Resources towards 100% Renewable Grids in 2050

    Get PDF
    Recently, many renewable energy (RE) initiatives around the world are based on general frameworks that accommodate the regional assessment taking into account the mismatch of supply and demand with pre-set goals to reduce energy costs and harmful emissions. Hence, relying entirely on individual assessment and RE deployment scenarios may not be effective. Instead, developing a multi-faceted RE assessment framework is vital to achieving these goals. In this study, a regional RE assessment approach is presented taking into account the mismatch of supply and demand with an emphasis on Photovoltaic (PV) and wind turbine systems. The study incorporates mapping of renewable resources optimized capacities for different configurations of PV and wind systems for multiple sites via test case. This approach not only optimizes system size but also provides the appropriate size at which the maximum renewable energy fraction in the regional power generation mix is maximized while reducing energy costs using MATLAB’s ParetoSearch algorithm. The performance of the proposed approach is tested in a realistic test site, and the results demonstrate the potential for maximizing the RE share compared to the achievable previously reported fractions. The results indicate the importance of resource mapping based on energy-demand matching rather than a quantitative assessment of anchorage sites. In the examined case study, the new assessment approach led to the identification of the best location for installing a hybrid PV / wind system with a storage system capable of achieving a nearly 100% autonomous RE system with Levelized cost of electricity of 0.05 USD/kWh
    • …
    corecore