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Abstract: Respiratory rate (RR) is a vital sign with continuous, convenient, and accurate measurement 
which is difficult and still under investigation. The present study investigates and evaluates a 
stretchable and wearable inkjet-printed strain gauge sensor (IJP) to estimate the RR continuously 
by detecting the respiratory volume change in the chest area. As the volume change could cause 
different strain changes at different body postures, this study aims to investigate the accuracy of the 
IJP RR sensor at selected postures. The evaluation was performed twice on 15 healthy male subjects 
(mean ± SD of age: 24 ± 1.22 years). The RR was simultaneously measured in breaths per minute 
(BPM) by the IJP RR sensor and a reference RR sensor (e-Health nasal thermal sensor) at each of the 
fve body postures namely standing, sitting at 90◦, Flower’s position at 45◦, supine, and right lateral 
recumbent. There was no signifcant difference in measured RR between IJP and reference sensors, 
between two trials, or between different body postures (all p > 0.05). Body posture did not have 
any signifcant effect on the difference of RR measurements between IJP and the reference sensors 
(difference <0.01 BPM for each measurement in both trials). The IJP sensor could accurately measure 
the RR at different body postures, which makes it a promising, simple, and user-friendly option for 
clinical and daily uses. 

Keywords: inkjet printing; respiratory rate; strain gauge; stretchable and wearable sensors; silver 
nanoparticles; clinical evaluation; body posture 

1. Introduction 

Clinically, respiratory rate (RR), defned as the times of breath per minute (BPM), is a vital sign 
whose abnormality could indicate various pathological conditions in cardiorespiratory system [1,2]. 
Compared with other vital signs such as heart rate and blood pressure, RR is more accurate in screening 
unstable patients [1,3,4]. Therefore, RR monitoring has been used in detecting sleep apnea, cardiac 
arrest, and sudden infant death syndrome [3,5]. Especially, compared with discrete RR measurement, 
continuous RR monitoring could detect RR abnormalities with more than 10 times of accuracy [2]. 
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However, despite the clinical signifcance of RR, continuous, convenient, and accurate RR 
monitoring is still difficult. It was reported in [2] that the RR was the least documented vital sign even 
when the patients suffered from respiratory issues. Manual RR counting is widely used in clinical 
examination [3] but is not accurate [2]. Other traditional techniques of clinical RR monitoring include 
spirometry, pneumotachograph, and capnography [1,4,6]. These techniques could accurately measure 
RR, but are cumbersome, difficult to manipulate, or mask-based [4]. 

To achieve continuous and convenient RR monitoring, some new techniques have been 
developed [7–10]. Some researchers extract RR from other physiological signals such as 
photoplethysmogram and electrocardiogram [11]. Other studies derived respiration signals using 
non-contact techniques such as C-band sensing [12] and dual smartphone cameras [4]. Some researchers 
tried distant (less than 10 m) RR detecting based on Wi-Fi, radar, or thermal imaging [11]. Compared 
with these techniques, wearable and stretchable sensors could independently measure RR without 
limiting the daily activities of the users. Additionally, the stretchable and wearable sensors could 
achieve highly accurate RR measurement at a low cost [13]. 

For a wearable RR sensor, the high accuracy at different body postures could enable its application 
in various clinical and daily situations. Several studies [3,12,14] have investigated the accuracy of RR 
monitoring devices at different body postures (sitting, standing and supine and side). For instance, 
Huang et al. [3] embedded arrays of load sensors in an e-textile bed sheet to measure RR from the full 
body pressure distribution on the sheet. The sensor was tested on 14 human subjects in prone, side and 
supine postures during sleep. The results showed that RR measurement was more accurate in prone 
and supine postures compared with side posture. The authors deduced that this difference was due to 
the amplitude of respiratory movement which is more prominent in thoracic and abdominal areas than 
on both sides. Zhu et al. [14] developed a fber bragg grating (FBG) sensor mat with three FBG arrays 
under the pillow, below upper chest, and below lower chest. The sensor was tested on 12 human 
subjects while lying in prone and side postures. For each of the three sensors, the mean error of RR 
measurement was lower than one BPM with standard deviation (STD) within ±0.25 BPM, compared 
with the reference RR measured by a polysomnography belt sensor. Guan et al. [12] developed a 
wireless system to measure RR based on C-band sensing. In prone, sitting, and standing postures, the 
error of RR detection was within 7%, 6.2% and 5.5% compared with a reference RR sensor. The author 
suggested that standing posture have the largest infuence on the quality of C-band RR detection. Nam 
et al. [4] used dual cameras on a smartphone to measured RR by refectance imaging on the chest and 
the abdomen, with average median error of 1.43% and 1.62%. 

The majority of existing studies on the effect of body posture on RR detection accuracy were 
based on non-stretchable [15–17] or non-wearable RR sensors [3,12,14], with a lack of related study 
based on stretchable RR sensors. Compared with traditional RR sensors, stretchable RR sensors are 
in direct contact with body surface, and are therefore, more likely to be infuenced by body posture. 
Considering the increasing amount of stretchable RR sensors and the possibility of application in 
different scenarios, there is an urgent need to investigate the effect of body posture on the accuracy of 
stretchable RR sensors. 

The aim of this paper is to investigate the effect of different body postures (standing, sitting at 90◦ , 
Flower’s position at 45◦, supine and right lateral recumbent) on the accuracy of a new stretchable and 
wearable inkjet-printed RR sensor. 

2. Methods 

2.1. Physiological Measurements 

2.1.1. Subjects 

Fifteen healthy male subjects (mean ± SD of age: 24± 1.22 years) without any known cardiovascular 
or respiratory diseases participated in this study with written informed consent. The protocol adhered 
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to the tenets of the Declaration of Helsinki. Before the experiment, the procedure was explained in 
detail to each subject. 

2.1.2. Sensors 

Inkjet printing (IJP) is a promising technology in the fabrication of stretchable and wearable 
sensors. Compared with other fabrication techniques, IJP has less sophisticated process and lower 
cost [18–21]. The IJP RR sensor was fabricated on polydimethylsiloxane (PDMS) substrate using 
conductive silver nanoparticle ink, as shown in Figure 1a which was presented in [22]. During 
respiration, the sensor acted as a variable resistance whose value increased during inhalation and 
decreased during exhalation, due to the volume change in the ribcage or the abdomen. The change in 
resistance was obtained by a Wheatstone bridge circuit with three fxed resistances, amplifed by an 
instrumentational amplifer, and fnally fed into an Arduino microcontroller to derive RR. 
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Figure 1. (a) The Inkjet printing (IJP) respiration rate (RR) sensor. (b) The reference e-Health RR sensor. 
(c) The derived respiratory signals in 30s. 

The reference RR value was measured by a thermal nasal e-Health sensor (e-Health AirFlow sensor, 
Cooking Hacks), shown in Figure 1b, which has been validated previously in the literature [23,24]. 
The e-Health sensor detects the thermal changes in airfow during inhalation and exhalation. Due to 
the difference in working principle between IJP and reference RR sensors, their respiratory signals 
fuctuated in opposite directions with a phase shift, as shown in Figure 1c. 
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2.1.3. Measurement Procedure 

During the measurement, the IJP sensor was mounted at the xiphoid process using adjustable 
fabric belt with e-Health sensor mounted at the nostril as shown in Figure 2. The IJP sensor was tested 
at fve different body postures in randomized order: sitting at 90◦, 45◦ Fowler’s position, standing, 
supine, and right lateral recumbent, as shown in Figure 3. In the lateral recumbent, Flower’s position 
and supine, the test subjects had their heads resting on a pillow. Only the right lateral recumbent was 
included without the left one, because the bilateral respiratory movements have been proved to be 
similar [25]. At each posture, the test was repeated twice in order to investigate the repeatability. The 
RR recording lasted for one minute in each trial, with a 60 s break between the two trials. The test 
subjects were asked not to move during the test and to breathe normally. 
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2.2. Respiratory Rate Derivation 

An algorithm was developed on MATLAB (R2018b, MathWorks Inc., Natick, MA, USA) to extract 
the RR values from the respiratory signals. Firstly, raw data were input into the bridge circuit at 
a sampling frequency of 100 Hz. The signal was then fltered to remove the direct current (DC) 
component and some extremely high and low frequencies using a band-pass flter with lower and 
higher cut-off frequencies of 0.05 Hz and 1.5 Hz. Finally, fast Fourier transform (FFT) was used to 
determine the respiration frequency, which is the frequency with the highest amplitude. RR was 
derived as: RR = 60 × respiratory frequency. Figure 4 shows the derivation procedure of the RR 
from the IJP sensor. Note in Figure 4 that the sharp peak is considered as noise since it exceeds the 
amplitudes of adjacent respiratory cycles with time period of less than 0.1 s, which is impossible for a 
respiratory cycle even for maximum inhalation or exhalation [11]. 
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MathWorks Inc., Natick, MA, USA). The arrow in the frst subfgure shows the spike caused by noise. 
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2.3. Statistical Analysis 

The statistical analysis was performed on SPSS (Version 20, SPSS Inc., Chicago, IL, USA). Firstly, 
to investigate if the RR measurement was signifcantly infuenced by body postures, repeated trials, 
and different sensors, analysis of variance (ANOVA) was performed with Levene’s test to validate the 
homogeneity of variance. Signifcance was defned as p-value less than 0.05. To further investigate the 
effect of body posture on the measurement accuracy, the difference between RR values derived by IJP 
sensor and reference sensor was calculated for each measurement in different postures. Moreover, post 
hoc test based on Tukey’s test was used to evaluate the statistical signifcance of the RR between any 
two postures to fgure out the effect of the posture on the RR. 

3. Results 

As shown in Figure 5, in each trial and posture, IJP and reference RR sensors derived nearly 
identical distributions of RR. The details are listed in Table A1, Appendix A. The Levene’s test showed 
that the dataset satisfed the homogeneity of variance (p > 0.05). Hence, ANOVA was performed on 
RR values. The results showed no signifcant differences in measured RR between IJP and reference 
sensors, between two measurement trials, and among different body postures (all p > 0.05). Moreover, 
post hoc test showed no signifcant difference in the RR between any two posture (all p > 0.05). 
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4. Discussion 

4.1. IJP Sensor Accuracy: Comparison with Other Sensors 

The ANOVA results showed that IJP sensor had high accuracy, good repeatability, and stability at 
different body postures. With no observable deviation from the reference sensor at all body postures, 
the accuracy of the IJP sensor was better than many sensors reported in the literature where the RR 
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measured by stretchable sensor deviated from the reference value from 1.7% to more than 6% in 
different postures [4,12,26–30]. 

4.2. RR Measurements at Different Body Postures 

The body posture could signifcantly infuence the lung volume [12,31–33] and the consequent RR 
detection. The lung has the largest volume capacity at the sitting posture [31]. In lateral recumbent 
posture, lung and chest wall compliances decrease, which limits the amplitude of thoracic respiration 
movement [25]. Small respiratory movement amplitude could result in miscounting of RR. In 
stretchable RR sensors, due to the difference in strain between different postures, the accuracy of RR 
could be different. 

However, in this study, IJP sensor showed high accuracy at different postures. Firstly, the skin-like 
characteristics of the PDMS surface allow the IJP sensor to closely attach to the body surface and 
follow the topographical changes [34,35]. Secondly, the polymer-based strain gauge sensors are very 
sensitive (gauge factor > 100) compared with typical strain gauge (2 ≤ gauge factor ≤ 5). Thirdly, silver 
nanoparticles are highly sensitive which increased the accuracy of the IJP sensor [36]. Finally, during 
the measurement, test subjects did not move, talk or laugh, which largely reduced the movement 
artefact in respiratory signals. 

4.3. Application of the IJP Sensor 

In addition to its accuracy, the IJP sensor is a low-cost sensor with skin-like characteristics that 
enhances the wearability of the sensor without limiting the daily activities of the patients. All the 
aforementioned characteristics of the IJP sensor makes it suitable for remote and continuous RR 
monitoring in low-resources settings and refugee camps, decreasing the pressure on the healthcare 
facilities in these settings which suffer from limited healthcare resources [37]. Continuous RR 
measurement in different postures is clinically signifcant especially for the monitoring of hospitalized 
patients. Currently, the RR monitoring relies on inaccurate manual counting in a short period (often 30 
s or 1 min) or is neglected [38]. The mask-based or contact RR sensors, such as the e-Health sensor in 
this study, could cause uncomfortableness which makes them inappropriate for long-term continuous 
RR monitoring. The IJP sensor could accurately and continuously measure RR without any skin allergy 
or other clinical events, which makes it possible for clinical use. RR measurement at different body 
postures is important for patients with different physiological conditions. For example, some patients 
under physiotherapy or with plastic cast need to keep in mainly supine or lateral recumbent postures. 
Therefore, the IJP sensor provides the possibility of continuous RR monitoring in different patients. 

The IJP RR sensor is also applicable for RR monitoring at home without disturbing the users’ 
daily activities. Wearable sensors could provide RR monitoring during the night at the supine and 
lateral position to inspect the sleep quality and contribute in early diagnostic of several sleep-related 
issues such as sleep apnea and insomnia [39]. Moreover, such wearable sensors could be used to 
reduce sudden infant death syndrome by providing comfortable and continuous RR monitoring [40]. 
Additionally, wearable sensors can be integrated into safety belts in automobiles which eases the 
monitoring of the RR during driving [11,41]. The IJP sensor accurately measured the RR at all the 
inspected postures which paved the way for its further application in daily life. 

4.4. Limitations and Future Work 

The evaluation of the sensor was performed on 15 healthy male subjects only. Firstly, scale-up 
validation was needed. Secondly, to eliminate the error caused by movement artefact, the IJP sensor 
was frmly fxed on the xiphoid process. In different body positions, the sensitivity to posture change 
might be different, which needs further investigation. Thirdly, the evaluation of wider age groups 
and genders could be performed to investigate if the IJP sensor is suitable for people with different 
physiological conditions. Furthermore, the study was performed on healthy subjects. The performance 
of the sensor on subjects with pathological conditions needs further investigation. The IJP sensor is a 
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low-cost and wearable sensor that provides the possibility of daily RR monitoring. However, motion 
artefact is a major concern regarding the accuracy of RR monitoring during daily activities [11]. For 
the further application especially in daily healthcare monitoring, full validation on different levels 
of motion artefact is needed. Finally, more comfortable mounting mechanism such as the use of 
biocompatible and skin-friendly adhesive should be investigated. 

5. Conclusions 

The IJP sensor was able to measure the RR accurately at the fve postures (standing, sitting at 90◦ , 
Flower’s position at 45◦, supine and right lateral recumbent), with good repeatability which makes it 
user-friendly, and very convenient for clinical practices with minimal user efforts and training needs. 
This IJP sensor is promising for continuous RR monitoring in different clinical and daily situations. 
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Appendix A 

Table A1. Average RR (breaths per minute, BPM) measured by the IJP and e-Health sensors at fve 
different body postures. 

Gender Age 
Standing 

Our Ref 

Sitting 

Our Ref 

45 Deg. 

Our Ref 

Supine 

Our Ref 

Lateral 

Our Ref 

M 24 11.7 11.7 13.65 13.65 11.7 11.7 15.6 15.6 11.7 11.7 
M 23 21.51 21.51 21.51 21.51 17.58 17.58 19.56 19.56 23.46 23.46 
M 25 21.48 21.48 21.51 21.51 23.46 23.46 21.51 21.51 19.56 19.56 
M 25 19.56 19.56 19.56 19.56 17.58 17.58 15.63 15.63 15.6 15.6 
M 23 17.58 17.58 21.51 21.51 13.65 13.65 21.51 21.51 17.58 17.58 
M 24 15.6 15.6 13.65 13.65 11.7 11.7 13.65 13.65 11.7 11.7 
M 24 13.65 13.65 13.65 13.65 9.75 9.75 9.75 9.75 11.7 11.7 
M 23 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 23.4 
M 26 15.6 15.6 17.58 17.58 15.6 15.6 15.6 15.6 17.58 17.58 
M 21 19.56 19.35 19.56 19.56 21.51 21.51 19.56 19.56 19.56 19.56 
M 25 17.58 17.58 19.56 19.56 19.53 19.53 17.58 17.58 15.6 15.6 
M 24 23.46 23.46 29.31 29.31 23.46 23.46 23.46 23.46 19.53 19.53 
M 24 7.8 7.8 9.75 9.75 9.75 9.75 11.7 11.7 11.7 11.7 
M 22 15.6 15.6 15.6 15.6 11.7 11.7 9.75 9.75 11.7 11.7 
M 24 17.58 17.58 17.58 17.58 15.6 15.6 15.6 15.6 13.65 13.65 
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