21 research outputs found

    Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes for Nonlinear Conjugate Gradient Methods

    Get PDF
    In this paper, we deal with matrix-free preconditioners for Nonlinear Conjugate Gradient (NCG) methods. In particular, we review proposals based on quasi-Newton updates, and either satisfying the secant equation or a secant-like equation at some of the previous iterates. Conditions are given proving that, in some sense, the proposed preconditioners also approximate the inverse of the Hessian matrix. In particular, the structure of the preconditioners depends both on low-rank updates along with some specific parameters. The low-rank updates are obtained as by-product of NCG iterations. Moreover, we consider the possibility to embed damped techniques within a class of preconditioners based on quasi-Newton updates. Damped methods have proved to be effective to enhance the performance of quasi-Newton updates, in those cases where the Wolfe linesearch conditions are hardly fulfilled. The purpose is to extend the idea behind damped methods also to improve NCG schemes, following a novel line of research in the literature. The results, which summarize an extended numerical experience using large-scale CUTEst problems, is reported, showing that these approaches can considerably improve the performance of NCG methods

    Consanguinity and reproductive health among Arabs

    Get PDF
    Consanguineous marriages have been practiced since the early existence of modern humans. Until now consanguinity is widely practiced in several global communities with variable rates depending on religion, culture, and geography. Arab populations have a long tradition of consanguinity due to socio-cultural factors. Many Arab countries display some of the highest rates of consanguineous marriages in the world, and specifically first cousin marriages which may reach 25-30% of all marriages. In some countries like Qatar, Yemen, and UAE, consanguinity rates are increasing in the current generation. Research among Arabs and worldwide has indicated that consanguinity could have an effect on some reproductive health parameters such as postnatal mortality and rates of congenital malformations. The association of consanguinity with other reproductive health parameters, such as fertility and fetal wastage, is controversial. The main impact of consanguinity, however, is an increase in the rate of homozygotes for autosomal recessive genetic disorders. Worldwide, known dominant disorders are more numerous than known recessive disorders. However, data on genetic disorders in Arab populations as extracted from the Catalogue of Transmission Genetics in Arabs (CTGA) database indicate a relative abundance of recessive disorders in the region that is clearly associated with the practice of consanguinity

    Early holocenic and historic mtDNA african signatures in the iberian peninsula: The andalusian region as a paradigm

    Get PDF
    Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of "migratory routes" in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians--from Huelva and Granada provinces--and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.Financial support was provided by the Spanish Ministry of Competitiveness through Research Project CGL2010-15191/BOS granted to RC and International Mobility Program Acciones Integradas Hispano-Portuguesas (PRI-AIBPT-2011-1004) granted to RC (Spain) and LP (Portugal) (http://www.mineco.gob.es/portal/site/mineco/idi). The E.C. Sixth Framework Programme under Contract n° ERAS-CT-2003-980409 (EUROCORES project of the European Science Foundation) also provided financial support to JMD for North African population research. CLH has a predoctoral fellowship granted by Complutense University. PS is supported by FCT Investigator Programme (IF/01641/2013). IPATIMUP (https://www.ipatimup.pt/) integrates the Instituto the Investigação em Saúde (i3S) Research Unit, which is partially supported by FCT, the Portuguese Foundation for Science and Technology. IPATIMUP is funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and National Funds through the FCT - under the project PEst-C/SAU/LA0003/2013. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    An efficient compressive sensing method for connected health applications

    No full text
    . The sensitive domain of healthcare intensifies the shortcomings associated with internet of things (IoT) based remote health monitoring systems in terms of their high-energy consumption and big data issues such as latency and privacy, caused by, the continuous stream of raw data. Hence, in the development of their remote elderly monitoring system (REMS), the authors focus on using embedded multicore architectures as powerful IoT edge devices and energy efficient signal acquisition and processing techniques to elevate such limitations. This study addresses the design of sparsifying matrices for electroencephalogram (EEG) signals in the context of compressed sensing. These signals are known to be non-sparse in both time and standard transform domains. The designed matrices are adapted to the data and are based on the autoregressive modeling of the signal and the singular value decomposition (SVD) of the impulse response matrix of the linear predictive coding (LPC) filter. To facilitate the hardware implementation and to prolong the life of the wearable node, the measurement matrix is chosen to be binary. The proposed algorithm has been applied to the EEGLab dataset 'eeglab data set' with an average normalized mean square error of 0.068.This paper was made possible by National Priorities Research Program (NPRP) Grant No. 9-114-2-055 from the Qatar National Research Fund (a member of Qatar Foundation).Scopu
    corecore