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Quasi-Newton-Based Preconditioning
and Damped Quasi-Newton Schemes for
Nonlinear Conjugate Gradient Methods

Mehiddin Al-Baali, Andrea Caliciotti, Giovanni Fasano and Massimo Roma

Abstract In this paper, we deal with matrix-free preconditioners for nonlinear AQ11

conjugate gradient (NCG) methods. In particular, we review proposals based on2

quasi-Newton updates, and either satisfying the secant equation or a secant-like3

equation at some of the previous iterates. Conditions are given proving that, in some4

sense, the proposed preconditioners also approximate the inverse of the Hessian5

matrix. In particular, the structure of the preconditioners depends both on low-rank6

updates along with some specific parameters. The low-rank updates are obtained7

as by-product of NCG iterations. Moreover, we consider the possibility to embed8

damped techniques within a class of preconditioners based on quasi-Newton updates.9

Damped methods have proved to be effective to enhance the performance of quasi-10

Newton updates, in those cases where the Wolfe linesearch conditions are hardly11

fulfilled. The purpose is to extend the idea behind damped methods also to improve12

NCG schemes, following a novel line of research in the literature. The results, which13

summarize an extended numerical experience using large-scale CUTEst problems, is14

reported, showing that these approaches can considerably improve the performance15

of NCG methods.As per style, this chapter requires Keywords. Please provide key- AQ216

words.17
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2 M. Al-Baali et al.

1 Introduction18

Several iterative methods were proposed in the literature, for the solution of the19

large-scale unconstrained optimization problem minx∈Rn f (x), where f : R
n → R20

(see, e.g., [1–6]). Among them, the nonlinear conjugate gradient (NCG) along with21

quasi-Newton methods is undoubtedly the most commonly used. Indeed, they both22

prove to be actually effective in practice and are endowed with a mature theory,23

including strong convergence properties.AQ3 24

On this purpose, let us first consider a general iterative preconditioned nonlinear
conjugate gradient (PNCG) method, which generates a sequence of iterates {xk}.
Essentially, three choices at current step k strongly affect both the effectiveness and
the efficiency of the overall method. The first choice refers to the adopted linesearch
procedure, along with the selected steplength αk > 0 used to give the next iterate
xk+1, being

xk+1 = xk + αk pk,

where pk is the search direction. The second choice refers to the selection of the
parameter βk , which is responsible for the computation of the next search direction,
being

pk+1 = −gk+1 + βk pk,

where p1 = −g1 and gk denotes ∇ f (xk). In the case where the function f (x) is non-25

quadratic, different expressions for the parameter βk in the latter formula may yield26

significantly different (preconditioned) NCG schemes. In particular, among the first27

classic choices in the literature for the parameter β, we have the proposals by Fletcher28

and Reeves (FR) [7], Polak and Ribière (PR) [8], Hestenes and Stiefel (HS) [9]. More29

modern and efficient schemes have also been studied. In particular, we urge to men-30

tion the proposals in the seminal papers [10] and [3, 4], since they raised novel ideas31

whichhaveinspiredseveraladvancesinthelastdecade.Recently,Neculai (see[11]and32

therein references) reported an efficient version of the NCG method, which promises33

to outperform the proposal in [4]. This gives room to further improvements in the lat-34

est literature (see also [5]), where some appealing properties of L-BFGS update are35

exploited in the context of NCG, with the purpose of improving efficiency. The latter36

research area has also partially inspired the results reported in the current paper.37

The third proper choice for the symmetric positive definite preconditioner Mk+1 ∈
R

n×n often plays a keynote role for the computation of pk+1, being

pk+1 = −Mk+1gk+1 + βk pk,

where βk may depend on Mk and Mk+1 and p1 = −M1g1. Of course, the latter three38

choices are not independent. Indeed, an inaccurate linesearch procedure turns to39

be harmful and may require a large number of function and gradient evaluations.40

Similarly, a careless choice of the preconditioner risks to possibly destroy both con-41

vergence properties and numerical performance of the PNCG. These observations42

impose a specific attention before selecting a preconditioner.43

449842_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:12/4/2018 Pages: 22 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f

Fasano
Nota
Ok



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes … 3

In the first part of this paper, we review some preconditioners for NCG, which are44

based on the satisfaction of a secant-based equation (see [12–14] for details). Our45

main purpose here is to show that imposing the satisfaction of the secant condition46

surely represents an important guideline to gain second-order information about the47

objective function. However, on highly nonlinear functions, when the distance among48

the last iterates increases, the satisfaction of the secant equation at any iterate might49

represent a tight request, which does not necessarily enhance the information on50

second-order information. On the contrary, in [12] the approximation of an average51

Hessian matrix is built by using an initial guess suggested by the quadratic case.52

Then, the initial guess is refined imposing some secant-like conditions, which are53

used to set accordingly some parameters.54

We remark that the preconditioners are iteratively constructed and based on satis-55

fying either the secant or a modified secant equation and partially recover the structure56

of quasi-Newton updates. On the overall, our proposals for preconditioners comply57

with the next specifications:58

• do not rely on the structure of the minimization problem in hand;59

• are matrix-free, and hence, they are naturally conceived for large-scale problems;60

• are built drawing inspiration from quasi-Newton schemes;61

• convey information from previous iterations of the PNCG method.62

We urge to recall that the idea of using a quasi-Newton update as a possible precon-63

ditioner, within the NCG algorithms, is not new; examples of such an approach can64

be found for instance in [15, 16] or in the more recent proposal [17]. In particular,65

the efficient framework in [17] explicitly exploits the relation between the conjugate66

gradient method and BFGS quasi-Newton approach, in the quadratic case.67

In the second part of the paper, we show how to combine damped techniques68

with preconditioning strategies, as introduced in [18]. Taking inspiration from [19–69

21], two different damping strategies are proposed. In particular, we focus on the70

Polak–Ribière (PR) (recently, Polak–Ribière–Polyak (PRP)) method, showing that,71

under reasonable assumptions, the damped and preconditioned version of this method72

(denoted by D-PR-PNCG), can be able to efficiently tackle also difficult problems.73

This is confirmed by the results of an extensive numerical testing reported (see [18]74

for details).75

Under mild assumptions, the proposals in this paper preserve convergence prop-76

erties for the PNCG method.77

As regards the notations, we denote for an n-real vector x , the Euclidean norm by78

‖x‖. Moreover, for a symmetric matrix A, A � 0 indicates that A is positive definite.79

1.1 Preconditioned Nonlinear Conjugate Gradient (PNCG)80

Method81

Here, we first recall a general scheme of PNCG algorithm. In the following scheme,82

Mk ∈ R
n×n denotes a possible positive definite preconditioner at the iteration k.83
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4 M. Al-Baali et al.

84

Preconditioned Nonlinear Conjugate Gradient (PNCG) Scheme85

Step 1: Data x1 ∈ R
n and M1 � 0. Set p1 = −M1g1 and k = 1.86

Step 2: Use a linesearch procedure to compute the steplength αk , which satisfies87

the Wolfe conditions, and set the next iterate as88

xk+1 = xk + αk pk .89

Step 3: If a stopping criterion is satisfied then stop, else compute the coefficient90

βk along with the preconditioner Mk+1 � 0. Compute a search direction
by91

92

pk+1 = −Mk+1gk+1 + βk pk . (1)93

Set k = k + 1 and go to Step 2.94

Of course, in case Mk = I for all k, the PNCG scheme reduces to the NCG method.95

Also, observe that as an alternative, in order to possibly improve the efficiency of NCG96

by introducing preconditioning strategies, the Step 3 of PNCG might be replaced by97

the next one.98
99

Step 3: If a stopping criterion is satisfied then stop, else compute the coefficient
βk along with the preconditioner Mk+1. If Mk+1 � 0 or Mk+1gk+1 = 0100

then set Mk+1 = I . Compute the search direction101

pk+1 = −Mk+1gk+1 + βk pk .102

Set k = k + 1 and go to Step 2.103

The steplength αk and the parameter βk can be chosen in a variety of ways. In
particular, in order to prove global convergence properties, a Wolfe-type linesearch
procedure seems mandatory, while to improve the overall efficiency, several values
for βk have appeared in the literature (see also Sect. 1). Here, we neither intend
to propose a novel choice of βk , nor we want to consider any specific linesearch
procedure to compute αk for the PNCG algorithm. In this regard, the Wolfe conditions
are well-suited for our purposes, inasmuch as under mild assumptions they guarantee
the fulfillment of the usual curvature condition

sT
k yk > 0,

being sk = xk+1 − xk and yk = gk+1 − gk . On the other hand, we strongly remark the104

importance of the positive definiteness for preconditioners, in order to prove global105

convergence results.106
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Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes … 5

2 Quasi-Newton Updates for Preconditioning107

In this section, we suitably exploit some quasi-Newton updates in order to build
preconditioners. As well known (see, e.g., [1]), when using quasi-Newton methods
in place of (1), at iteration k, we generate a search direction of the form

pk = −Hk gk,

where Hk represents an approximation of the inverse Hessian matrix [∇2 f (xk)]−1.108

Then, as in Step 2 of PNCG, the new iterate xk+1 can be obtained according to xk+1 =109

xk + αk pk , where αk as above is a steplength computed by a Wolfe-type procedure.110

In particular, instead of computing Hk from scratch at each iteration k, quasi-Newton111

methods update Hk in a simple manner by means of adding a small number of rank112

one matrices, in order to obtain the new approximation Hk+1 to be used in the next113

iteration. Moreover, instead of storing full dense n × n approximations, they only114

save a few vectors of length n, which allow to represent the approximations {Hk}115

implicitly.116

Among the quasi-Newton schemes, the L-BFGS method is definitely considered117

one of the most efficient methods, and the amount of storage it requires can be118

controlled by the user throughout setting the limited memory parameter. This method119

is based on the construction of the approximation of the inverse Hessian matrix,120

by exploiting curvature information gained only from the most recent iterations.121

Specifically, Hk−1 is updated by BFGS at the kth iteration as122

Hk = V T
k−1 Hk−1Vk−1 + ρk−1sk−1sT

k−1, (2)123

where

ρk−1 = 1

sT
k−1 yk−1

, Vk−1 = I − ρk−1 yk−1sT
k−1.

In case f (x) is quadratic, i.e., f (x) = 1
2 xT Ax + bT x , A ∈ R

n×n , b ∈ R
n , then we124

have explicitly Vk−1 = I − Ask−1sT
k−1/sT

k−1 Ask−1 and the following lemma holds.125

Lemma 1 Let us consider the quadratic function f (x) = 1
2 xT Ax + bT x with A �

0. Suppose the steplength αk in Step 2 of PNCG is computed using an exact linesearch
procedure. Given the expression of Hk in (2), along with Hk � 0 and the positions

ρi = 1

sT
i yi

, sT
i yi �= 0, i = 1, . . . , k,

Vi = I − ρi yi sT
i , i = 1, . . . , k,

then we have126
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6 M. Al-Baali et al.

Hk = V T
k−1V T

k−2 · · · V T
1 H 1

k V1 · · · Vk−2Vk−1 +
k−1∑

i=1

si sT
i

sT
i Asi

, (3)127

where H 1
k � 0 is given (usually, a multiple of the unit matrix).128

Proof First observe that since f (x) is quadratic, then yi = Asi , i = 1, . . . , k, and the
vectors s1, . . . , sk are mutually conjugate, i.e., sT

i As j = 0, for any 1 ≤ i �= j ≤ k.
We prove (3) by complete induction.
When k = 2, by (2), we explicitly obtain

H2 = V T
1 H 1

k V1 + ρ1s1sT
1 = V T

1 H 1
k V1 + s1sT

1

sT
1 As1

.

Now, assume (3) holds for some k − 1, and we prove (3) for the index k as follows.
Recalling the conjugacy among vectors {si } yields

V T
k−1si =

(
I − sk−1 yT

k−1

sT
k−1 Ask−1

)
si = si , i = 1, . . . , k − 2,

by (2), we immediately have after some computations129

Hk = V T
k−1 Hk−1Vk−1 + sk−1sT

k−1

sT
k−1 Ask−1

130

= V T
k−1V T

k−2 · · · V T
1 H 1

k V1 · · · Vk−2Vk−1 +
k−1∑

i=1

si sT
i

sT
i Asi

.131

�132

133

Note that Formula (3) for the quadratic case can suggest iterative updates to134

generate preconditioners for PNCG. Indeed, drawing inspiration from (3) and [22],135

in case f (x) is quadratic (i.e., NCG coincides with the conjugate gradient method),136

we have137

A−1 =
n∑

j=1

s j sT
j

sT
j As j

. (4)138

In view of (4), the rightmost contribution in (3) may represent an approximate inverse139

of the Hessian matrix A up to the kth iteration. As an extension, we can borrow the last140

idea also in case f (x) is a general nonlinear function, in order to generate possible141

preconditioners which approximate the rightmost matrix in (3). In particular, in this142

regard, we will have to assess a couple of issues:143

(a) We have to set a finite number of NCG iterations m ≤ n, which are necessary144

to build the approximation of the rightmost matrix in (3).145
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Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes … 7

(b) We have to explicitly indicate how to approximately compute the quantities146

sT
i Asi , for i ≥ 1, in (3); indeed, unlike in the quadratic case, when f (x) is a147

general nonlinear function, the quantity sT
i Asi is unavailable at iteration i .148

3 Preconditioners Based on the BFGS Update: First149

Proposal150

In this section, we review the preconditioners for PNCG proposed in [12], which151

exploits the contents of Sect. 2. We now report the general expression of this class152

of preconditioners.153

Mk+1 = τkCk + γkvkvT
k + ωk

k∑

j=k−m

s j sT
j

yT
j s j

, (5)154

where Ck ∈ R
n×n , vk ∈ R

n , τk, γk, ωk ∈ R and m is positive integer. Here, we con-
sider

Ck = sT
k yk

‖yk‖2
I, τk = ωk, γk = 2

sT
k yk

,

vk = sk − τkCk yk − ωk

k∑

j=k−m

sT
j yk

yT
j s j

s j ,

ωk =
1

2
sT

k yk

yT
k Ck yk +

k∑

j=k−m

(sT
j yk)

2

sT
j y j

, γk = 2

sT
k yk

and m 
 n, 0 ≤ m ≤ k − 1. For further motivations along with the rationale behind155

this proposal, we refer to [12]. In the sequel, we report the main theoretical results156

and a summary of the numerical experience.157

Observe that the right-hand side of (5) includes three contributions. More specif-
ically, the rightmost matrix represents an approximate inverse Hessian, as in the
guidelines of the conclusions of Sect. 2. In particular, exploiting the mean value
theorem, we can write

y j = g j+1 − g j =
∫ 1

0
∇2 f (x j + ts j )

T s j dt, j ≥ 1,

so that assuming ∇2 f (z) = A j constant for z ∈ [x j , x j+1], we have
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8 M. Al-Baali et al.

yT
j s j =

∫ 1

0
sT

j ∇2 f (x j + ts j )
T s j dt ≈ sT

j A j s j , j ≥ 1,

showing that the issue (b), at the end of Sect. 2, can be easily treated. Moreover,158

the integer m in (5) represents a memory and guarantees that complying with (a),159

information from only the lattermost m iterations is collected.160

A few comments need also be added, with respect to the role played by the matrix
Ck and the parameter τk in (5). Ck is chosen similar to the matrix H 1

k = λk I , where
λk is the solution of the subproblem

min
λ

‖(λI )yk − sk‖2.

In other words, λk = yT
k sk/‖yk‖2 is a value of the parameter λ which aims at approxi-161

mately solving the initial secant equation (λI )yk = sk . As usual, the use of the Wolfe162

conditions ensures that λk > 0.163

On the other hand, the exact role played by the parameter τk in (5) is a bit more164

technical and is in particular related to eigenvalue clustering for the preconditioner165

Mk+1, as highlighted in the next Theorem (see also Proposition 3 in [12]).166

Theorem 1 Let f (x) = 1/2xT Ax + bT x, with A � 0, and assume that167

• k ≥ 2 iterations of the NCG algorithm are performed.168

• an exact linesearch procedure is adopted.169

• Mk+1 is defined as in (5) with m ≤ n − 2.170

Then, at least n − (m + 2) eigenvalues of Mk+1 coincide with τk .171

As detailed in [12], the next proposition can be proved for the update (5), showing172

its well-posedness and the satisfaction of some secant-like conditions.173

Proposition 1 Let f be twice continuously differentiable. Suppose that k iterations174

of NCG are performed, using the strong Wolfe linesearch procedure. Let Mk+1 be175

defined as in (5), with 0 ≤ m ≤ k − 1, τk > 0 and γk, ωk ≥ 0.176

(i) Let Ck ∈ R
n×n be symmetric positive definite, then there exist values of τk, γk, ωk177

such that Mk+1 � 0 and the secant equation Mk+1 yk = sk is satisfied.178

(ii) Let f (x) = 1/2xT Ax + bT x, with A � 0. Suppose k ≥ 2 iterations of the NCG
algorithm are performed, using an exact linesearch. Then, there exist values of
τk , γk , ωk , and a positive semidefinite matrix Ck, such that Mk+1 � 0. Moreover,
Mk+1 yk = sk and the modified secant conditions

Mk+1 yi = ωksi , i = k − m, . . . , k − 1,

are satisfied.179

Before reporting other proposals for possible preconditioners in PNCG, we highlight180

the role played by the vector vk in (5). In particular, the value of vk is set in such181

a way that Mk+1 satisfies the secant equation Mk+1 yk = sk (at iteration k). In this182
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Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes … 9

regard, the computation of vector vk follows a similar guideline with respect to the183

idea adopted by SR1 quasi-Newton update (see also [1] for details).184

As a preliminary numerical experience which reveals the performance of the
proposal Mk+1 in (5), the preconditioner Mk+1 has been embedded in PNCG, with
m = min{4, k − 1} and βk computed as in the Polak–Ribière (PR) (recently, Polak–
Ribière–Polyak (PRP)) formula

βk =
[
gk+1 − gk

]T
Mk+1gk+1

gT
k Mk gk

.

In [12], the resulting PR-PNCG has been experienced over a set of 112 large-scale185

problems of CUTEst collection [23]. This proposal (5) (namely OUR PREC_PR) is186

compared with the L-BFGS update (setting the memory parameter m = 4) (namely187

PREC-LBFGS_PR), used as a preconditioner, and with the unpreconditioned NCG188

scheme (namely UNPREC_PR). Results are reported in Figs. 1 and 2, in terms of189

# iterations and # of function evaluations. Note that the steplength αk is computed190

such that the strong Wolfe conditions191

fk+1 ≤ fk + c1αk gT
k pk,

and
|gT

k+1 pk | ≤ c2|gT
k pk |,

where 0 < c1 < 0.5 and c1 < c2 < 1, hold (we used as for the code CG+, c1 =192

0.0001 and c2 = 0.9). We also remark that in Fig. 1, the original stopping criterion193

of the code CG+ (see [24]), i.e., ‖gk‖∞ ≤ 10−5(1 + | fk |), is adopted, while in Fig. 2,194

the more common criterion from the literature195

‖gk‖ ≤ 10−5 max{1, ‖xk‖} (6)196

is used, showing the effectiveness and efficiency of our first proposal (5).197

4 Preconditioners Based on the BFGS Update: Second198

Proposal199

As second proposal for a possible preconditioning strategy, which again exploits200

the contents in Sect. 2, we have the following update for Mk+1 in PNCG scheme as201

proposed in [14].202

Mk+1 = δk Mk + γkvkvT
k + ωk

pk pT
k

yT
k pk

, δk > 0, (7)203
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10 M. Al-Baali et al.

Fig. 1 Performance profiles using the original stopping criterion ‖gk‖∞ ≤ 10−5(1 + | fk |) in the
code CG+ [24], adopting PR and with respect to # i terations (up) and # f unction evaluations
(down)

with γk, ωk ∈ R \ {0}, and where, given Mk and the vector pk generated by NCG,
we have for vk the expression

vk = σk (sk − δk Mk yk − ωk pk) , σk ∈ {−1,+1}.

The proposal in (7) follows a different strategy with respect to (5), inasmuch as it204

more closely attempts to emulate quasi-Newton updates. Indeed, similar to (5) also in205

(7) Mk+1 includes three contributions, being the rightmost term ωk pk pT
k /yT

k pk built206

using information collected at iteration k of the NCG method, and the leftmost term207

δk Mk being representative of the preconditioner at the previous iteration. Finally, the208
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Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes … 11

Fig. 2 Profiles using the novel stopping criterion (6), adopting PR and with respect to # i terations
(up) and # f unction evaluations (down)

term γkvkvT
k in (7) is introduced so that Mk+1 can explicitly satisfy the secant equation209

Mk+1 yk = sk . The latter considerations confirm that, similar to BFGS update, the210

dyad ωk pk pT
k /yT

k pk aims at adding the most recent information from NCG to our211

current preconditioner.212

The next couple of theoretical results can also be proved for the proposal (7),213

confirming to what extent (7) closely resembles quasi-Newton approaches (see [14]214

for details).215

Proposition 2 Let f (x) = 1
2 xT Ax − bT x, where A is a symmetric matrix. Suppose216

k steps of the NCG method are performed, adopting an exact linesearch procedure217

(which imposes ∇ f (x j+1)
T p j = 0, j = 1, . . . , k), in order to detect the stationary218

point (if any) of the function f . Then, the matrix Mk+1 in (7) satisfies the modified219

449842_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:12/4/2018 Pages: 22 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

12 M. Al-Baali et al.

secant equations220

⎧
⎨

⎩

Mk+1 y j = δ j s j , δ j > 0, j = 1, . . . , k − 1,

Mk+1 yk = sk,

(8)221

provided that the nonzero coefficients γ j , ω j , j = 1, . . . , k are chosen such that222

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ j = 1

sT
j y j − δ j yT

j M j y j − ω j pT
j y j

, j = 1, . . . , k,

ω j �= sT
j y j − δ j yT

j M j y j

pT
j y j

, j = 1, . . . , k.

(9)223

Proposition 2 reveals to what extent the matrix Mk+1 substantially summarizes some224

second-order information on the objective function f (x). In particular, by (8), the225

secant equation at the current iterate xk is fulfilled, while a weaker condition holds226

at the previous iterates, being possibly δ j �= 1, for j = 1, . . . , k − 1. Also, note that227

the choice of the parameters {δ j }, {γ j } and {ω j } in Proposition 2 does not ensure228

in general the positive definiteness of Mk+1. Indeed, pre-multiplying the second229

relation in (8) by yk , we obtain yT
k Mk+1 yk = yT

k sk , where the right-hand side might230

be possibly negative, inasmuch as no Wolfe conditions were adopted in Proposition 2231

when applying the NCG. On this guideline, the next result helps recover the positive232

definiteness of the preconditioner Mk+1 (see [14]).233

Proposition 3 Let f be a continuously differentiable function. Suppose that the234

NCG method is used to minimize the function f . Suppose that sT
k yk > 0, Mk � 0,235

εk ∈ (0, 1) and236

0 < δk = (1 − εk)
sT

k yk

yT
k Mk yk

,237

0 < ωk < εkαk,238

0 < γk = 1

(εkαk − ωk)pT
k yk

.239

Then conditions (8)–(9) hold and Mk+1 � 0 in (7).240

By Proposition 3, a suitable interval of values for δk , γk , and ωk always exists such241

that (8)–(9) hold and Mk+1 � 0, even though an inexact linesearch procedure is242

adopted (but not necessary the Wolfe linesearch procedure). Moreover, the hypothesis243

Mk � 0 might be too restrictive to our purposes, and we can easily prove that244

what really matters is the weaker condition yT
k Mk yk > 0 along with the inequality245

yT
k sk > 0.246

By Proposition 2, we have also a remarkable result in case the objective function247

f (x) is quadratic. Indeed, after n steps, the matrix Mn+1 retains information on the248
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Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes … 13

inertia of the Hessian matrix, as in the next corollary (see [14]), where λm(·) and249

λM(·) represent, respectively, the smallest and the largest eigenvalue.250

Corollary 1 Let f (x) = 1
2 xT Ax − bT x, where A is symmetric and nonsingular.251

Suppose that n steps of the CG are performed, in order to detect the stationary point252

of the function f , and that the vectors p1, . . . , pn are generated.253

(i) If (8)–(9) hold, we have

Mn+1 A = (s1 · · · sn)D(s1 · · · sn)
−1,

with
D = diag{δ1, δ2, . . . , δn−1, 1}.

(ii) It results254

λm(Mn+1 A) = λm(D), λM(Mn+1 A) = λM(D). (10)255

Several interesting conclusions arise considering the two proposals in Sects. 3256

and 4 for Mk+1; we urge to carry out the following observations, which are also the257

result of a deeper investigation not reported here:258

• Both the proposals for the preconditioner Mk+1 are based on the attempt to emulate259

the BFGS update, in order to possibly benefit from some of its well-known features260

(i.e., the satisfaction of the secant equation and BFGS attitude to approximate the261

inverse Hessian in the quadratic case).262

• while the scheme in (5) details an update based on m + 1 pairs (s j , y j ), j =263

k − m, . . . , k, provided by the NCG method, the scheme in (7) simply relies on264

the pair (pk, yk) generated at step k of the NCG method.265

• the proposal in (7) seems to be endowed with stronger theoretical properties with266

respect to (5). As also shown in the next sections, the latter fact is also reflected in267

an appreciable enhancement of numerical performance, over a significant large-268

scale test set. Indeed, comparing the proposals in Sects. 3 and 4, over the same test269

set specified in Sect. 3, we obtain the performance profiles in Fig. 3, using (6) for270

termination which is the same as that used for obtaining Fig. 2.271

5 Damped Strategies for NCG Preconditioning272

Damped techniques were introduced in the framework of quasi-Newton methods,273

and their rationale can be summarized as follows. As is well known (see, e.g., [1]),274

when dealing with the BFGS update, a crucial issue in order to guarantee the positive275

definiteness of the updated Hessian approximation is the satisfaction of the curvature276

condition277

sT
k yk > 0. (11)278
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14 M. Al-Baali et al.

Fig. 3 Comparison between the proposal of preconditioner in (5) (namely M, dash line) and the
proposal in (7) (namely M_mod, solid line), using the stopping criterion (6). Profiles with respect
to # iterations (up) and # function evaluations (down)

In case f is strongly convex, then (11) holds for any pair of points xk and xk+1 (see,279

e.g. [25]). In case of nonconvex functions, imposing the satisfaction of condition (11)280

requires a proper choice of the stepsize αk , from the linesearch procedure adopted.281

Indeed, in principle, the satisfaction of (11) can always be obtained by a suitable282

linesearch procedure, provided that the objective function is bounded below. To this283

aim, as mentioned above, the Wolfe conditions (in practice, the strong Wolfe condi-284

tions) are usually adopted, which ensure the fulfillment of condition (11). However,285

for sufficiently large value of c2, the value of sT
k yk may not be sufficiently positive. In286
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Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes … 15

addition, if only the backtracking linesearch framework is employed, the curvature287

condition (11) may not hold.288

A possible successful strategy to cope with the last issue is to adopt the damped289

technique proposed by Powell in [19], in the context of SQP Lagrangian BFGS290

methods for constrained optimization and applied for the first time by Al-Baali [26]291

to unconstrained optimization. In [19], the author proposes to modify the difference292

of the gradients vector yk in (11), before performing the BFGS update. Namely, if Bk293

denotes the current BFGS positive definite Hessian approximation at kth iteration,294

the following modified (damped) vector is used in place of yk :295

ŷk = ϕk yk + (1 − ϕk)Bksk, (12)296

where ϕk is chosen in (0, 1] such that sT
k ŷk is “sufficiently positive.” The latter297

fact guarantees that the use of the damped vector ŷk is in principle preferable with298

respect to yk . In particular, given σ ∈ (0, 1], the value of the parameter ϕk is often299

set according with the rule:300

ϕk =

⎧
⎪⎪⎨

⎪⎪⎩

σ sT
k Bksk

sT
k Bksk − sT

k yk
, if sT

k yk < (1 − σ)sT
k Bksk,

1, otherwise,

(13)301

which for σ = 0.8 yields that in Sect. 18.3 in [1]. There are several reasons which302

motivate (13), including the fact that by this choice we have303

sT
k ŷk = (1 − σ)sT

k Bksk, (14)304

i.e., the quantity sT
k ŷk is sufficiently positive, inasmuch as Bk is positive definite. Al-305

Baali suggests using the modified damped vector (12) with (13) for unconstrained306

optimization and extended it to307

ϕk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1sT
k Bksk

sT
k Bksk − sT

k yk
, if sT

k yk < (1 − σ1)sT
k Bksk,

σ2sT
k Bksk

sT
k Bksk − sT

k yk
, if sT

k yk > (1 + σ2)sT
k Bksk,

1, otherwise,

(15)308

where σ1 ∈ (0, 1] and σ2 ≥ 2. Note that the value σ2 = ∞ reduces choice (15) to309

(13).310

In [18], in order to extend the definition of the damped vector ŷk in (12), a novel311

vector ŷk is defined as a combination of the original vector yk and an appropriate312

vector zk , namely313
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16 M. Al-Baali et al.

ŷk = ϕk yk + (1 − ϕk)zk, (16)314

(see also [27]). The vector zk plays a noteworthy role to ensure that sT
k ŷk is sufficiently315

positive, for suitable values of ϕk ∈ (0, 1]. Of course, a key point of this approach is316

an appropriate choice of zk . Two choices for zk have been proposed in [18].317

The first proposal corresponds to set zk = ηksk , where ηk > 0, based on approx-
imating Bk by ηk I . This choice originates from the idea of using zk = Ak+1 yk in
(16), where Ak+1 is a positive definitive approximation of the inverse Hessian. In
particular, Bk ≈ ηk I satisfies the modified secant equation

Ak+1 yk = ηksk .

Hence, by using the latter equation, we can set318

ŷ(a)

k = ϕk yk + (1 − ϕk)ηksk . (17)319

Interesting properties of (17) are that it does not require the explicit knowledge of320

the approximate inverse Hessian matrix Ak+1 and that321

sT
k ŷ(a)

k = (1 − σ1)ηk‖sk‖2 > 0, (18)322

for appropriate choice of the parameter in (16). This condition may be of great323

interest if we consider a geometric interpretation of the curvature condition (11).324

Indeed, since for the vector ŷ(a)

k condition (18) is satisfied, it means that sT
k ŷ(a)

k is325

always sufficiently positive. Moreover, it can be easily proved that for proper choices326

of the parameters ηk and σ , we obtain (as long as (11) holds)327

sT
k ŷ(a)

k ≥ sT
k ŷk . (19)328

Furthermore, also in case (11) does not hold, by relation (18), we immediately infer329

that again (19) holds.330

The second proposal corresponds to set in (16) zk = −αk gk , so that the novel331

damped vector becomes332

ŷ(b)

k = ϕk yk − (1 − ϕk)αk gk . (20)333

This choice of zk comes from the following observation: If Bk � 0 is an approxi-
mation of the Hessian and we consider −B−1

k gk as search direction, it immediately
follows that

sk = xk+1 − xk = −αk B−1
k gk,

which implies
Bksk = −αk gk .

449842_1_En_1_Chapter � TYPESET DISK LE � CP Disp.:12/4/2018 Pages: 22 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes … 17

This formula allows to compute the original damped vector (12) without explicitly
using the matrix Bk . Indeed, it suffices to replace Bksk with −αk gk in (12), according
with (20).
Similar to the choice ŷ(a)

k , also for ŷ(b)

k in (20), we can guarantee that sT
k ŷ(b)

k is suffi-
ciently positive. In fact, we immediately have from (14)

sT
k ŷ(b)

k = −αk(1 − σ1)s
T
k gk = −α2

k (1 − σ1)pT
k gk > 0,

where the last inequality holds because pk is a descent direction. Several theoretical
properties can be proved for the choices (17) and (20) (see also [18]). Some of them
are summarized here below, where we assume that the coefficient βk in PNCG is
replaced by the PR–type ‘damped coefficient’

β̂ P R
k =

(
ŷ(a)

k

)T
Mk+1gk+1

gT
k Mk gk

(the resulting PNCG scheme, with ŷ(a)

k in place of yk will be addressed as D-PR-334

PNCG).335

Assumption 1 (see [18])336

(a) Given the initial point x1 and the function f ∈ C1, the level set L1 =337

{x : f (x) ≤ f1} is compact.338

(b) There exists an open ball Br := {x : ‖x‖ < r} containing L1 where f (x) is
continuously differentiable and its gradient g(x) is Lipschitz continuous. In
particular, there exists L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖ for all x, y ∈ Br .

(c) There exist λ > 0 and � > 0 such that the preconditioner M(x), for any x ∈ Br ,
is positive definite with the smallest [largest] eigenvalue λm (M(x)) [λM (M(x))]
satisfying

0 < λ ≤ λm (M(x)) ≤ λM (M(x)) < �.

Proposition 4 Let {xk} be an infinite sequence (with gk �= 0) generated by the D-PR-339

PNCG method, where the steplength αk > 0 is determined by a linesearch procedure340

such that, for all k, the following conditions hold:341

(i) xk ∈ L1 for all k;342

(ii) lim
k→+∞

|gT
k pk |

‖pk‖ = 0;343

(iii) lim
k→+∞ αk‖pk‖ = 0.344
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18 M. Al-Baali et al.

If Assumption 1 holds, then

lim inf
k→+∞ ‖gk‖ = 0

and hence there exists at least a stationary limit point of {xk}.345

Similar to the proposals in Sects. 3 and 4, we consider now a brief numerical346

experience on the use of the damped vectors in (17) and (20). A complete study can347

be found in [18]. Observe that in principle the use of damped techniques fully affects348

the preconditioning strategies (where yk is replaced by ŷ(a)
k or ŷ(b)

k ), i.e., both the349

value of βk along with the preconditioner, and not just the value of βk . However, our350

Fig. 4 Comparison between the adoption of the two damped strategies in (17) and in (20). Profiles
with respect to # iterations (up) and # function and gradient evaluations (down)
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Quasi-Newton-Based Preconditioning and Damped Quasi-Newton Schemes … 19

preliminary aim here is to report a numerical experience with PNCG (and not D-351

PR-PNCG), i.e., embedding the damped techniques within the preconditioner used352

in a PNCG scheme, where the standard Polak–Ribière (PR) formula for βk is used.353

In particular, the same settings used in Sects. 3 and 4, along with the same test set354

are considered. We also recall that a standard implementation of the PNCG method355

in CG+ code was adopted (see [24]), where the preconditioner (5) is included, and356

the linesearch technique is the same as that in [28]. Finally, the stopping criterion357

adopted is the standard one in (6). We also recall that in the linesearch procedure358

adopted in [28] the number of function and gradient evaluations coincide. In Fig. 4,359

the two damped strategies in (17) (with ηk = 4 and ϕk chosen as in (13)) and in (20)360

Fig. 5 Comparison between the use β̂ P R
k (setting ŷk = ŷ(a)

k ) and β P R
k , in both preconditioned

and unpreconditioned cases. Profiles with respect to # iterations (up) and # function and gradient
evaluations (down)
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20 M. Al-Baali et al.

(with ϕk chosen as in (13)) are compared, with respect to both # iterations and #361

function evaluations. The strategy (17) seems to be somehow preferable to (20).362

To complete our analysis, we note that a full information from damped techniques363

can be used, both affecting the computation of the coefficient βk and the precondi-364

tioner Mk+1 in PNCG (see [18]). More explicitly, the performances of PNCG vs.365

D-PR-PNCG (where β̂ P R
k is used in place of β P R

k ) in both the preconditioned and366

unpreconditioned case are compared. The corresponding results are summarized in367

Fig. 5 (names of the schemes are self-explanatory). As it can be observed from the368

profiles, the use of β̂ P R
k does not yield a noteworthy improvement. Nevertheless, we369

also observe that the D-PR-PNCG scheme, which also uses β̂ P R
k , reveals to outper-370

form the standard NCG method.371
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