25 research outputs found

    Osseointegration for Amputees: Past, Present and Future: Basic Science, Innovations in Surgical Technique, Implant Design and Rehabilitation Strategies

    Get PDF
    Loss of a leg or arm is a tremendous disability. Immediate and obvious impairments are decreased mobility or diminished functional capacity. Not quite as obvious are the difficulties associated with activities of daily living, quality of life impairments, sometimes loss of independence or employment, and the mental health issues which often accompany limb loss. The interface between native tissue and the prosthetic limb presents the greatest challenge to amputee rehabilitation. Computer-controlled robotic limbs have been widely available since the 1990s. However, the weight of prosthetic limbs, coupled with the difficulty of where to locate the components, requires substantial loads to be transferred through the humanimplant interface. This interface has always been a skin-squeezing mechanism which results in repetitive soft-tissue loading and trauma, in both compression and shear, which inevitably causes multiple problems (pain, skin breakdown and infection, hyperhidrosis, allergic reaction to the material) leading to periodic or prolonged prosthesis disuse. So unfortunately, despite all the effort and expense invested in the prosthetic limb itself, patients often were unable to benefit. Percutaneous EndoProsthetic Osseointegration for Limbs (PEPOL) is a revolutionary technique that involves anchoring a metal implant directly to a patient’s skeleton, then permanently passed through the patient’s skin, and attached to a prosthetic limb. By doing this, the weight of the prosthesis is borne by the patient’s skeleton and is directly powered by muscles, leading to a lighter and more native experience. The skin is no longer compressed and traumatised, eliminating the aforementioned issues. Since learning about this technology in the mid-2000s and performing my first independent procedure in 2009, I have investigated and pioneered the world’s leading surgical techniques and rehabilitative methods for PEPOL. Treating nearly 1000 amputees via the Osseointegration Group of Australia and the MQ Health Limb Reconstruction Centre at Macquarie University has allowed research to be performed on this technology, documented, and discussed in the 2 Body of Work. Patients almost always improve their objective and assessed mobility performance (Overall 38.6% distance improvement on the 6MWT), they wear their prosthetic limb more (Overall 38.1% increase in the Q-TFA Prosthetic Use Score), and they are subjectively more satisfied with their condition as an amputee (Overall 41.1% increase in the Q-TFA Global Score) . While these benefits are consistent, my research has also identified the fortunately limited problems with infection and soft tissue management (29% of all patients required re-operations due to direct or indirect complications). PEPOL clearly provides excellent improvement for the vast majority of patients, and the continued investigation of this technology should lead to even greater improvements in progressing from what is already successful, make it more readily available, and ameliorate its existing challenges

    Osseointegrated total knee replacement connected to a lower limb prosthesis: 4 cases

    Get PDF
    Background and purpose Osseointegrated implants are an alternative for prosthetic attachment in individuals with amputation who are unable to wear a socket. However, the load transmitted through the osseointegrated fixation to the residual tibia and knee joint can be unbearable for those with transtibial amputation and knee arthritis. We report on the feasibility of combining total knee replacement (TKR) with an osseointegrated implant for prosthetic attachment. Patients and methods We retrospectively reviewed all 4 cases (aged 38–77 years) of transtibial amputations managed with osseointegration and TKR in 2012–2014. The below-the-knee prosthesis was connected to the tibial base plate of a TKR, enabling the tibial residuum and knee joint to act as weight-sharing structures. A 2-stage procedure involved connecting a standard hinged TKR to custom-made implants and creation of a skin-implant interface. Clinical outcomes were assessed at baseline and after 1–3 years of follow-up using standard measures of health-related quality of life, ambulation, and activity level including the questionnaire for transfemoral amputees (Q-TFA) and the 6-minute walk test. Results There were no major complications, and there was 1 case of superficial infection. All patients showed improved clinical outcomes, with a Q-TFA improvement range of 29–52 and a 6-minute walk test improvement range of 37–84 meters. Interpretation It is possible to combine TKR with osseointegrated implants

    Single-stage osseointegrated reconstruction and rehabilitation of lower limb amputees: the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2) for a prospective cohort study

    Get PDF
    Introduction: Lower limb amputations have detrimental influences on the quality of life, function and body image of the affected patients. Following amputation, prolonged rehabilitation is required for patients to be fitted with traditional socket prostheses, and many patients experience symptomatic socket–residuum interface problems which lead to reduced prosthetic use and quality of life. Osseointegration has recently emerged as a novel approach for the reconstruction of amputated limbs, which overcomes many of the socket-related problems by directly attaching the prosthesis to the skeletal residuum. To date, the vast majority of osseointegration procedures worldwide have been performed in 2 stages, which require at least 4 months and up to 18 months for the completion of reconstruction and rehabilitation from the time of the initial surgery. The current prospective cohort study evaluates the safety and efficacy of a single-stage osseointegration procedure performed under the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2), which dramatically reduces the time of recovery to ∼3–6 weeks. Methods and analysis: The inclusion criteria for osseointegrated reconstruction under the OGAAP-2 procedure are age over 18 years, unilateral transfemoral amputation and experiencing problems or difficulties in using socket prostheses. All patients receive osseointegrated implants which are press-fitted into the residual bone. Functional and quality-of-life outcome measures are recorded preoperatively and at defined postoperative follow-up intervals up to 2 years. Postoperative adverse events are also recorded. The preoperative and postoperative values are compared for each outcome measure, and the benefits and harms of the single-stage OGAAP-2 procedure will be compared with the results obtained using a previously employed 2-stage procedure. Ethics and dissemination: This study has received ethics approval from the University of Notre Dame, Sydney, Australia (014153S). The study outcomes will be disseminated by publications in peer-reviewed academic journals and presentations at relevant clinical and orthopaedic conferences

    Osseointegrated prosthetic limb for amputees: Single stage surgery

    Get PDF
    The Osseointegrated Prosthetic Limb (OPL) was introduced in 2011. The socket prostheses failed to address a few major requirements of normal gait. Our hypothesis was that using an Osseointegrated Prosthetic limb will result in superior function of daily activities, without compromising patients’ safety. Traditionally this surgery was done as a two-stage procedure. The aims of this study were (A)to describe the single - surgical procedure of the OPL; and (B)To present data on potential risks and benefits with sssessment of clinical and functional outcomes at follow up

    Transcutaneous bone-anchoring prosthesis with hip replacement: A novel treatment for amputees

    Get PDF
    Background Over the last two decades, Transcutaneous Bone-Anchored Prosthesis (TCBAP) has proven to be an effective alternative for prosthetic attachment for above knee amputees, particularly for individuals suffering from socket interface related complications. [1-17] Amputees with a very short femoral residuum (<15 cm) are at a considerable higher risk for these complications as well as high risk of implant failure, if they underwent a typical TCBAP due to the relatively small bony-implant contact leading to a need of a novel technique. Aim A. To describe the surgical procedure combining THR with TCBAP for the first time; and B. To present preliminary data on potential risks and benefits with assessment of clinical and functional outcomes at follow up Method We used a TCBAP connected to the stem of a Total Hip Replacement (THR) prosthesis enabling the femoral residuum and the hip joint to act as weight sharing structures by transferring the load directly to the pelvis. We performed a tri-polar THR connected to a custom made TCBAP at the first stage followed by creating a skin implant interface as a second stage. We retrospectively reviewed three cases of transfemoral amputations presenting with extremely short femoral residuum. Patients were assessed clinically and functionally including standard measures of health-related quality of life, amputee mobility predictor tool, ambulation tests and actual activity level. Progress was monitored for 6-24 months. Results Clinical outcomes including adverse events show no major complications. Functional outcomes improved for all participants as early as 6 months follow up. All cases were wheelchair bound preoperatively (K0 – AMPRO) improved to walking with One stick (K3 – AMPRO) at 3 months follow up. Discussion &amp; Conclusion THR and TCBAP were combined for the first time in this proof-of-concept case series. The preliminary outcomes indicated that this procedure is potentially a safe and effective alternative despite the theoretical increase in risk of ascending infection through the skin-implant interface to the external environment for this patient group. We suggest larger comparative series to further validate these results

    Health-related quality of life of individuals with transfemoral amputation fitted with the Transcutaneous Bone Anchoring Prosthesis following the OGAAP [Conference Abstract]

    Get PDF
    Background The benefits and safety transcutaneous bone anchored prosthesis relying on a screw fixation are well reported.[1-17] However, most of the studies on press-fit implants and joint replacement technology have focused on surgical techniques.[3, 18-23] One European centre using this technique has reported on health related quality of life (HRQOL) for a group of individuals with transfemoral amputation (TFA).[3] Data from other centres are needed to assess the effectiveness of the technique in different settings. Aim This study aimed at reporting HRQOL data at baseline and up to 2-year follow-up for a group of TFAs treated by Osseointegration Group of Australia who followed the Osseointegration Group of Australia Accelerated Protocol (OGAAP), in Sydney between 08/12/2011 and 09/04/2014. Method A total of 16 TFAs (7 females and 9 males, age 51 ± 12 y, height 1.73 ± 0.12 m, weight 83 ±18 kg) participated in this study. The cause of amputation was trauma or congenital limb deficiency for 11 (69%) and 5 (31%) participants, respectively. A total of 12 (75%) participants were prosthetic users while 4(25%) were wheelchair bound prior the surgery. The HRQOL were obtained from Questionnaire for Persons with Transfemoral Amputation (Q-TFA) using the four main scales (i.e., Prosthetic use, Mobility, Problem, Global) one year before and between 6.5 and 24 months after the Stage 1 of the surgeries for the baseline and follow-up, respectively. Results The lapse of time before and after Stage 1 was -6.19±3.54 and 10.83±3.58 months respectively. The raw score and percentage of improvement are presented in Figures 1 and 2, respectively. Discussion &amp; Conclusion The average results demonstrated an improvement in each domain, particularly in the reduction of problems and an increase in global state. Furthermore, 56%, 75%, 94% and 69% of the participants reported an improvement in Prosthetic use, Mobility, Problem, Global scales, respectively. These results were comparable to previous studies relying of screwed fixation confirming that press-fit implantation is a viable alternative for bone-anchored prostheses.[1, 7, 8

    Osseointegrated prosthetic limb for amputees: Over one hundred cases

    Get PDF
    The Osseointegrated Prosthetic Limb (OPL) was introduced in 2011. Prior to its advent all prostheses consisted of stump and socket mechanisms which did not changed dramatically since Ambroise Pare lower limb prosthesis in 1525. These socket prostheses failed to address a few major requirements of normal gait. Our hypothesis was that using an Osseointegrated Prosthetic limb will result in superior function of daily activities, without compromising patients’ safety.The aims of this paper are (A) to describe the surgical procedure of the OPL; and (B) to present data on potential risks and benefits with assessment of clinical and functional outcomes at follow u

    The safety of one-stage versus two-stage approach to osseointegrated prosthesis for limb amputation

    No full text
    Aims Safety concerns surrounding osseointegration are a significant barrier to replacing socket prosthesis as the standard of care following limb amputation. While implanted osseointegrated prostheses traditionally occur in two stages, a one-stage approach has emerged. Currently, there is no existing comparison of the outcomes of these different approaches. To address safety concerns, this study sought to determine whether a one-stage osseointegration procedure is associated with fewer adverse events than the two-staged approach. Methods A comprehensive electronic search and quantitative data analysis from eligible studies were performed. Inclusion criteria were adults with a limb amputation managed with a one- or two-stage osseointegration procedure with follow-up reporting of complications. Results A total of 19 studies were included: four one-stage, 14 two-stage, and one article with both one- and two-stage groups. Superficial infection was the most common complication (one-stage: 38% vs two-stage: 52%). There was a notable difference in the incidence of osteomyelitis (one-stage: nil vs two-stage: 10%) and implant failure (one-stage: 1% vs two-stage: 9%). Fracture incidence was equivocal (one-stage: 13% vs two-stage: 12%), and comparison of soft-tissue, stoma, and mechanical related complications was not possible. Conclusion This review suggests that the one-stage approach is favourable compared to the two-stage, because the incidence of complications was slightly lower in the one-stage cohort, with a pertinent difference in the incidence of osteomyelitis and implant failure
    corecore