106 research outputs found

    Martian rocks, minerals, and mantles

    Get PDF
    The variable nature of Mars was first observed almost 400 years ago and modern observations began almost 40 years ago, culminating with the flotilla of spacecraft now at or heading for Mars. We now know that the atmosphere, which produced the visible variation of Mars, has also covered it with a mantle that makes difficult any detailed investigation of the rocks and minerals of Mars

    Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets

    No full text
    Oxygen isotopes were measured in four chondritic hydrated interplanetary dust particles (IDPs) and five chondritic anhydrous IDPs including two GEMS-rich particles (Glass embedded with metal and sulfides) by a combination of high precision and high lateral resolution ion microprobe techniques. All IDPs have isotopic compositions tightly clustered around that of solar system planetary materials. Hydrated IDPs have mass-fractionated oxygen isotopic compositions similar to those of CI and CM carbonaceous chondrites, consistent with hydration of initially anhydrous protosolar dust. Anhydrous IDPs have small 16O excesses and depletions similar to those of carbonaceous chondrites, the largest 16O variations being hosted by the two GEMS-rich IDPs. Coarse-grained forsteritic olivine and enstatite in anhydrous IDPs are isotopically similar to their counterparts in comet Wild 2 and in chondrules suggesting a high temperature inner solar system origin. The small variations in the 16O content of GEMS-rich IDPs suggest that most GEMS either do not preserve a record of interstellar processes or the initial interstellar dust is not 16O-rich as expected by self-shielding models, although a larger dataset is required to verify these conclusions. Together with other chemical and mineralogical indicators, O isotopes show that the parent-bodies of carbonaceous chondrites, of chondritic IDPs, of most Antarctic micrometeorites, and comet Wild 2 belong to a single family of objects of carbonaceous chondrite chemical affinity as distinct from ordinary, enstatite, K- and R-chondrites. Comparison with astronomical observations thus suggests a chemical continuum of objects including main belt and outer solar system asteroids such as C-type, P-type and D-type asteroids, Trojans and Centaurs as well as short-period comets and other Kuiper Belt Objects

    Excesses of ^(36)S in Sulfide-bearing Ca-Al-rich Inclusions from Allende

    Get PDF
    Introduction: Having four stable isotopes, Sis a potential tracer of processes such as mass independent chemistry, irradiation and/or the presence of nucleosynthetic anomalies [e.g. 1] in the early solar system. To study these processes, S isotope compositions were measured in 6 refractory metal-rich assemblages (Fremdlinge) from 3 Ca-Al-rich inclusions (CAis) and in 5 massive sulfides in chondrules and matrix of the Allende CV3 chondrite, using high precision multiple-collector secondary ion mass spectrometry

    A novel organic-rich meteoritic clast from the outer solar system

    Get PDF
    The Zag meteorite which is a thermally-metamorphosed H ordinary chondrite contains a primitive xenolitic clast that was accreted to the parent asteroid after metamorphism. The cm-sized clast contains abundant large organic grains or aggregates up to 20μm in phyllosilicate-rich matrix. Here we report organic and isotope analyses of a large (~10μm) OM aggregate in the Zag clast. The X-ray micro-spectroscopic technique revealed that the OM aggregate has sp2 dominated hydrocarbon networks with a lower abundance of heteroatoms than in IOM from primitive (CI,CM,CR) carbonaceous chondrites, and thus it is distinguished from most of the OM in carbonaceous meteorites. The OM aggregate has high D/H and 15N/14N ratios (δD=2,370±74‰ and δ15N=696±100‰), suggesting that it originated in a very cold environment such as the interstellar medium or outer region of the solar nebula, while the OM is embedded in carbonate-bearing matrix resulting from aqueous activities. Thus, the high D/H ratio must have been preserved during the extensive late-stage aqueous processing. It indicates that both the OM precursors and the water had high D/H ratios. Combined with 16O-poor nature of the clast, the OM aggregate and the clast are unique among known chondrite groups. We further propose that the clast possibly originated from D/P type asteroids or trans-Neptunian Objects

    Isotopic abundances of carbon and nitrogen in Jupiter-family and Oort Cloud comets

    Get PDF
    The 12C14N/12C15N and 12C14N/13C14N isotopic ratios are determined for the first time in a Jupiter-family comet, 88P/1981 Q1 Howell, and in the chemically peculiar Oort Cloud comet C/1999 S4 (LINEAR). By comparing these measurements to previous ones derived for six other Oort Cloud comets (including one of Halley-type), we find that both the carbon and nitrogen isotopic ratios are constant within the uncertainties. The mean values are 12C/13C ~ 90 and 14N/15N \~ 145 for the eight comets. These results strengthen the view that CN radicals originate from refractory organics formed in the protosolar molecular cloud and subsequently incorporated in comets.Comment: Accepted for publication in A&A letter

    Impact ionization mass spectra of anorthite cosmic dust analogue particles

    Get PDF
    Anorthite, the Ca-rich end-member of plagioclase feldspar, is a dominant mineral component of the Lunar highlands. Plagioclase feldspar is also found in comets, meteorites and stony asteroids. It is therefore expected to contribute to the population of interplanetary (and circumplanetary) dust grains within the solar system. After coating micron- and submicron-sized grains of Anorthite with a conductive layer of Platinum, the mineral was successfully accelerated to hypervelocity speeds in the Max Planck Institut für Kernphysik’s Van de Graaff accelerator. We present impact ionization mass spectra generated following the impacts of anorthite grains with a prototype mass spectrometer (the Large Area Mass Analyser, LAMA) designed for use in space, and discuss the behavior of the spectra with increasing impact energy. Correlation analysis is used to identify the compositions and sources of cations present in the spectra, enabling the identification of several molecular cations (e.g., CaAlO2, CaSiO2, Ca2AlO3/CaAlSi2O2) which identify anorthite as the progenitor bulk grain material

    ANALOGUE SAMPLES IN AN EUROPEAN SAMPLE CURATION FACILITY - THE EURO-CARES PROJECT.

    Get PDF
    The objective of the H2020-funded EURO-CARES project (grant agreement n° 640190) was to create a roadmap for the implementation of a European Extraterrestrial Sample Curation Facility (ESCF) that would be suitable for the curation of samples from all possible return missions likely over the next few decades, i.e. from the Moon, asteroids and Mars. The return of extraterrestrial samples brought to Earth will require specific storage conditions and handling procedures, in particular for those coming from Mars. For practical reasons and sterility concerns it might be necessary for such a facility to have its own collection of analogue samples permitting the testing of storage conditions, and to develop protocols for sample prepartion and analyses. Within the framework of the EURO-CARES project, we havecreated a list of the different types of samples that would be relevant for such a curation facility. The facility will be used for receiving and opening of the returned sample canisters, as well as for handling and preparation of the returned samples. Furthermore, it will provide some analysis of the returned samples, i.e. early sample characterisation, and is expected to provide longterm storage of the returned samples. Each of these basic functions requires special equipment. Equipment, handling protocols and long-term storage conditions will strongly depend on the characteristics of the materials, and on whether returned samples are from the Moon, Mars or an asteroidal body. Therefore the different types and aspects of analogue samples one need to be considered, i.e. the nature of the materials, which analogues are needed for what purpose, what mass is needed, and how should the analogue samples be stored within the facility. We distinguished five different types of anologue samples: analogue (s.s.), witness plate, voucher specimen, reference sample, and standard. Analogues are materials that have one or more physical or chemical properties similar to Earth-returned extraterrestrial samples. Reference samples are well-characterised materials with known physical and chemical properties used for testing. They may not necessarily be the same materials as the analogues defined above. Standards are internationally recognised, homogeneous materials with known physical and chemical properties that are used for calibration. They can also be used as reference samples in certain circumstances. They may be made of natural materials but are often produced artificially. A voucher specimen is a duplicate of materials used at any stage during sample acquisition, storage, transport, treatment etc., e.g. spacecraft materials (including solar panels), lubricants, glues, gloves, saws, drills, and others. In addition, Earth landing site samples (from the touch down site) would be necessary in case of doubtful analysis, even if normally this type of contamination is not expected. Finally, a witness plate is defined as material left in an area where work is being done to detect any biological, particulate, chemical, and/or organic contamination. It is a spatial and temporal document of what happens in the work area. Analogue materials could be solids (including ices), liquids or gases. These could contain biological (extant and/or exinct) and/or organic components. They could be natural materials, e.g. rocks or minerals, or could be manufactured, such as mixtures of different components, which may be biologically and/or organically doped. Analogues with appropriate sample size and nature will be well-suited for testing and training of sample handling procedures, and for transport protocols. The training of science and curation teams also requires reference samples and standards. Long-term storage needs special witness plates and voucher specimes. Developing and testing sample preparation protocols needs all sample types

    4. Building of a Habitable Planet

    Full text link
    • …
    corecore