17 research outputs found

    Targeting GSK3 and Associated Signaling Pathways Involved in Cancer

    Get PDF
    Glycogen synthase kinase 3 (GSK-3) is a serine/threonine (S/T) protein kinase. Although GSK-3 originally was identified to have functions in regulation of glycogen synthase, it was subsequently determined to have roles in multiple normal biochemical processes as well as various disease conditions. GSK-3 is sometimes referred to as a moonlighting protein due to the multiple substrates and processes which it controls. Frequently, when GSK-3 phosphorylates proteins, they are targeted for degradation. GSK-3 is often considered a component of the PI3K/PTEN/AKT/GSK-3/mTORC1 pathway as GSK-3 is frequently phosphorylated by AKT which regulates its inactivation. AKT is often active in human cancer and hence, GSK-3 is often inactivated. Moreover, GSK-3 also interacts with WNT/\u3b2-catenin signaling and \u3b2-catenin and other proteins in this pathway are targets of GSK-3. GSK-3 can modify NF-\u3baB activity which is often expressed at high levels in cancer cells. Multiple pharmaceutical companies developed small molecule inhibitors to suppress GSK-3 activity. In addition, various natural products will modify GSK-3 activity. This review will focus on the effects of small molecule inhibitors and natural products on GSK-3 activity and provide examples where these compounds were effective in suppressing cancer growth

    Supplementary Material for: Membrane-Associated Kaposi Sarcoma-Associated Herpesvirus Glycoprotein B Promotes Cell Adhesion and Inhibits Migration of Cells via Upregulating IL-1β and TNF-α

    No full text
    <b><i>Objectives:</i></b> Kaposi sarcoma-associated herpesvirus (KSHV) glycoprotein B (gB) is expressed on the viral envelope as well as on the cytoplasmic membrane of infected cells. In the current study, we aimed to decipher the impact of membrane-associated gB on adhesion and migration of cells via modulating the expression of cytokines. <b><i>Methods:</i></b> A combination of polymerase chain reaction array, cell adhesion assay, and wound-healing migration assay was conducted to study the influence of the gB-induced cytokines on cell adhesion and migration. <b><i>Results:</i></b> Membrane-associated gB was demonstrated to significantly upregulate the expression of IL-1β and TNF-α. Elevated levels of these cytokines were observed in conditioned medium (CM) collected from gB-expressing cells (gB-CM) compared to CM collected from untransfected cells or cells transfected with empty vector. KSHV gB-induced IL-1β and TNF-α play a role in the ability of gB-CM to mediate cell adhesion while inhibiting migration. <b><i>Conclusion:</i></b> Our results provide novel evidence that demonstrates full-length gB expressed on cell membrane to mediate adhesion and inhibit migration of cells not only by autocrine mechanism mediated by RGD-based interactions [Hussein et al.: BMC Cancer 2016; 16: 148], but also by paracrine mechanism mediated by gB-induced IL-1β and TNF-α

    Therapeutic resistance in breast cancer cells can result from deregulated EGFR signaling

    No full text
    The epidermal growth factor receptor (EGFR) interacts with various downstream molecules including phospholipase C (PLC)/protein kinase C (PKC), Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/GSK-3, Jak/STAT and others. Often these pathways are deregulated in human malignancies such as breast cancer. Various therapeutic approaches to inhibit the activity of EGFR family members including small molecule inhibitors and monoclonal antibodies (MoAb) have been developed. A common problem with cancer treatments is the development of drug-resistance. We examined the effects of a conditionally-activated EGFR (v-Erb-B:ER) on the resistance of breast cancer cells to commonly used chemotherapeutic drugs such as doxorubicin, daunorubicin, paclitaxel, cisplatin and 5-flurouracil as well as ionizing radiation (IR). v-Erb-B is similar to the EGFR-variant EGFRvIII, which is expressed in various cancers including breast, brain, prostate. Both v-Erb-B and EGFRvIII encode the EGFR kinase domain but lack key components present in the extracellular domain of EGFR which normally regulate its activity and ligand-dependence. The v-Erb-B oncogene was ligated to the hormone binding domain of the estrogen receptor (ER) which results in regulation of the activity of the v-Erb-ER construct by addition of either estrogen (E2) or 4-hydroxytamoxifen (4HT) to the culture media. Introduction of the v-Erb-B:ER construct into the MCF-7 breast cancer cell line increased the resistance to the cells to various chemotherapeutic drugs, hormonal-based therapeutics and IR. These results point to the important effects that aberrant expression of EGFR kinase domain can have on therapeutic resistance

    Abilities of berberine and chemically modified berberines to interact with metformin and inhibit proliferation of pancreatic cancer cells.

    No full text
    Pancreatic cancer is devastating cancer worldwide with few if any truly effective therapies. Pancreatic cancer has an increasing incidence and may become the second leading cause of death from cancer. Novel, more effective therapeutic approaches are needed as pancreatic cancer patients usually survive for less than a year after being diagnosed. Control of blood sugar levels by the prescription drug metformin in diseases such as diabetes mellitus has been examined in association with pancreatic cancer. While the clinical trials remain inconclusive, there is hope that certain diets and medications may affect positively the outcomes of patients with pancreatic and other cancers. Other natural compounds may share some of the effects of metformin. One "medicinal" fruit consumed by millions worldwide is berberine (BBR). Metformin and BBR both activate AMP-activated protein kinase (AMPK) which is a key mediator of glucose metabolism. Glucose metabolism has been shown to be very important in cancer and its significance is increasing. In the following studies, we have examined the effects of metformin, BBR and a panel of modified BBRs (NAX compounds) and chemotherapeutic drugs on the growth of four different human pancreatic adenocarcinoma cell lines (PDAC). Interestingly, the effects of metformin could be enhanced by BBR and certain modified BBRs. Upon restoration of WT-TP53 activity in MIA-PaCa-2\u202fcells, an altered sensitivity to the combination of certain NAX compounds and metformin was observed compared to the parental cells which normally lack WT-TP53. Certain NAX compounds may interact with WT-TP53 and metformin treatment to alter the expression of key molecules involved in cell growth. These results suggest a therapeutic approach by combining certain pharmaceutical drugs and nutraceuticals to suppress the growth of cancer cells

    Abilities of \u3b2-Estradiol to interact with chemotherapeutic drugs, signal transduction inhibitors and nutraceuticals and alter the proliferation of pancreatic cancer cells

    No full text
    Improving the effects of chemotherapy and reducing the side effects are important goals in cancer research. Various approaches have been examined to enhance the effectiveness of chemotherapy. For example, signal transduction inhibitors or hormonal based approaches have been included with chemo- or radio-therapy. MIA-PaCa-2 and BxPC-3 pancreatic ductal adenocarcinoma (PDAC) cells both express the estrogen receptor (ER). The effects of \u3b2-estradiol on the growth of PDAC cells has not been examined yet the ER is expressed in PDAC cells. We have examined the effects of combining \u3b2-estradiol with chemotherapeutic drugs, signal transcription inhibitors, natural products and nutraceuticals on PDAC. In most cases, inclusion of \u3b2-estradiol with chemotherapeutic drugs increased chemosensitivity. These results indicate some approaches involving \u3b2-estradiol which may be used to increase the effectiveness of chemotherapeutic and other drugs on the growth of PDAC

    Entry of Herpesviruses into Cells: The Enigma Variations

    No full text
    corecore