46 research outputs found

    HAZGRIDX: earthquake forecasting model for ML≥ 5.0 earthquakes in Italy based on spatially smoothed seismicity

    Get PDF
    We present a five-year, time-independent, earthquake-forecast model for earthquake magnitudes of 5.0 and greater in Italy using spatially smoothed seismicity data. The model is called HAZGRIDX, and it was developed based on the assumption that future earthquakes will occur near locations of historical earthquakes; it does not take into account any information from tectonic, geological, or geodetic data. Thus HAZGRIDX is based on observed earthquake occurrence from seismicity data, without considering any physical model. In the present study, we calculate earthquake rates on a spatial grid platform using two declustered catalogs: 1) the Parametric catalog of Italian earthquakes (Catalogo Parametrico dei Terremoti Italiani, CPTI04) that contains the larger earthquakes from MW 7.0 since 1100; and 2) the Italian seismicity catalogue (Catalogo della SismicitĂ  Italiana, CSI 1.1) that contains the small earthquakes down to ML 1.0, with a maximum of ML 5.9, over the past 22 years (1981-2003). The model assumes that earthquake magnitudes follow the Gutenberg-Richter law, with a uniform b-value. The forecast rates are presented in terms of the expected numbers of ML>5.0 events per year for each grid cell of about 10 km Ă— 10 km. The final map is derived by averaging the earthquake potentials that come from these two different catalogs: CPTI04 and CSI 1.1. We also describe the earthquake occurrences in terms of probabilities of occurrence of one event within a specified magnitude bin, DM0.1, in a five year time period. HAZGRIDX is one of several forecasting models, scaled to five and ten years, that have been submitted to the Collaboratory for the Study of Earthquake Probability (CSEP) forecasting center in ETH, Zurich, to be tested for Italy

    Good practices in PSHA: declustering, b-value estimation, foreshocks and aftershocks inclusion; a case study in Italy

    Get PDF
    SUMMARYThe classical procedure of the probabilistic seismic hazard analysis (PSHA) requires a Poissonian distribution of earthquakes. Seismic catalogues follow a Poisson distribution just after the application of a declustering algorithm that leaves only one earthquake for each seismic sequence (usually the stronger, i.e. the main shock). Removing earthquakes from the seismic catalogues leads to underestimation of the annual rates of the events and consequently associate with low seismic hazard as indicated by several studies. In this study, we aim investigating the performance of two declustering methods on the Italian instrumental catalogue and the impact of declustering on estimation of the b-value and on the seismic hazard analysis. To this end, first the spatial variation in the seismicity rate was estimated from the declustered catalogues using the adaptive smoothed seismicity approach, considering small earthquakes (Mw ≥ 3.0). We then corrected the seismicity rates using new approach that allows for counting all events in the complete seismic catalogue by simply changing the magnitude frequency distribution. The impact of declustering on seismic hazard analysis is illustrated using PSHA maps in terms of peak ground acceleration and spectral acceleration in 2 s, with 10 per cent and 2 per cent probability of exceedance in 50 yr, for Italy. We observed that the hazard calculated from the declustered catalogues was always lower than the hazard computed using the complete catalogue. These results are in agreement with previous results obtained in different parts of the world

    Prediction of High-Frequency Ground Motion Parameters Based on Weak Motion Data

    Get PDF
    Large earthquakes that have occurred in recent years in densely populated areas of the world (e.g. Izmit, Turkey, 17 August 1999; Duzce, Turkey, 12 November 1999; Chi-Chi, Taiwan 20 September 1999, Bhuj, India, 26 January 2001; Sumatra 26 December 2004; Wenchuan, China, May 12, 2008; L’Aquila, Italy, April 6, 2009; Haiti, January 2010 Turkey 2011) have dramatically highlighted the inadequacy of a massive portion of the buildings erected in and around the epicentral areas. For example, the Izmit event was particularly destructive because a large number of buildings were unable to withstand even moderate levels of ground shaking, demonstrating poor construction criteria and, more generally, the inadequacy of the application of building codes for the region. During the L’Aquila earthquake (April, 06, 2009; Mw=6.3) about 300 persons were killed and over 65,000 were left homeless (Akinci and Malagnini, 2009). It was the deadliest Italian earthquake since the 1980, Irpinia earthquake, and initial estimates place the total economic loss at over several billion Euros. Many studies have already been carried out describing the rupture process and the characteristics of local site effects for this earthquake (e.g. D’Amico et al., 2010a; Akinci et al., 2010). It has been observed that many houses were unable to withstand the ground shaking. Building earthquake-resistant structures and retrofitting old buildings on a national scale may be extremely costly and may represent an economic challenge even for developed western countries, but it is still a very important issue (Rapolla et al., 2008). Planning and design should be based on available national hazard maps, which, in turn, must be produced after a careful calibration of ground motion predictive relationships (Kramer, 1996) for the region. Consequently, the assessment of seismic hazard is probably the most important contribution of seismology to society. The prediction of the earthquake ground motion has always been of primary interest for seismologists and structural engineers. For engineering purposes it is necessary to describe the ground motion according to certain number of ground motion parameters such as: amplitude, frequency content and duration of the motion. However it is necessary to use more than one of these parameters to adequately characterize a particular ground motion. Updating existing hazard maps represents one of the highest priorities for seismologists, who contribute by recomputing the ground motion and reducing the related uncertainties. The quantitative estimate of the ground motion is usually obtained through the use of the so-called predictive relationships (Kramer, 1996), which allow the computation of specific ground-motion parameter as a function of magnitude, distance from the source, and frequency and they should be calibrated in the region of interest. However this is only possible if seismic records of large earthquakes are available for the specific region in order to derive a valid attenuation relationship regressing a large number of strong-motion data (e.g. Campbell and Bozorgnia, 1994; Boore et al., 1993; Ambraseys et al., 1996, Ambraseys and Simpson, 1996; Sabetta and Pugliese, 1987, 1996; Akkar and Bommer 2010). For the Italian region the most used attenuation relationships are those obtained by Sabetta and Pugliese (1987, 1996) regressing a few data recorded for earthquakes in different tectonic and geological environments. It has been shown in several cases that it is often not adequate to reproduce the ground motion in each region of the country using a single model. Furthermore the different crustal properties from region to region play a key role in this kind of studies. However, the attenuation properties of the crust can be evaluated using the background seismicity as suggested by Chouet et al. (1978) and later demonstrated by Raoff et al. (1999) and Malagnini et al (2000a, 2007). In other words, it becomes possible to develop regionallycalibrated attenuation relationships even where strong-motion data are not available. One of the purposes of this work is to describe quantitatively the regional attenuation and source characteristics for constraining the amplitude of strong motion expected from future earthquakes in the area. In this work we describe how to use the background seismicity to perform the analysis (details in Malagnini et. 2000a, 2007). In particular, this chapter describes the procedures and techniques to study the ground motion and will focus on describing both strong motion attenuation relationships and the techniques used to derive the ground motion parameters even when strong ground motion data are not available. We will present the results obtained for different regions of the Italian peninsula, showing that the attenuation property of the crust and of the source can significantly influence the ground motion. In addition, we will show that stochastic finite-fault modeling based on a dynamic frequency approach, coupled with field investigations, confirms to be a reliable and practical method to simulate ground motion records of moderate and large earthquakes especially in regions prone to widespread structural damage

    Overview of the seismic hazard in the Sicily channel archipelagos

    Get PDF
    A joint Italo–Maltese research project (Costituzione di un Sistema Integrato di Protezione Civile Transfrontaliero Italo–Maltese, SIMIT) was financially supported by the European community. One of the aims of SIMIT was to improve the geological and geophysical information in Lampedusa and in Malta and ultimately to mitigate natural hazards. Although this region lies on the Sicily Channel Rift Zone, a seismically active domain of Central Mediterranean, the knowledge about seismotectonic and seismic hazard is not satisfactory. At present, seismic hazard assessment (SHA) for Italy (MPS Working Group, 2004), Tunisia (Ksentini and Romdhane, 2014) and more generally for whole European areas (Giardini et al., 2013) do exist, whereas no specific SHA for the Sicily channel archipelagos are available. The Sicily Channel appears to be a region of moderate seismic activity, with the seismicity mainly located in the surrounding areas (Fig. 1). For the Malta archipelago a first catalogue, listing historical and felt earthquakes, was made by Galea (2007), whereas the Database Macrosismico Italiano (DBMI11; Locatiet al., 2011) does not list any data as regards earthquakes felt in Lampedusa. For this reason, in the present study, a theoretical seismic history was derived (Fig. 2) for Lampedusa and Malta, using the European–Mediterranean Earthquake Catalogue (EMEC) (Grünthal and Wahlström, 2012) and the attenuation relationship for macroseismic intensity data by Pasolini et al. (2008). The two study areas do not appear to have been affected by strong earthquakes occurring in the Sicily channel, but they were somehow struck by major earthquakes occurring in the surrounding area.peer-reviewe

    Uncertainty analysis for seismic hazard in Northern and Central Italy

    Get PDF
    In this study we examine uncertainty and parametric sensitivity of Peak Ground Acceleration (PGA) and 1-Hz Spectral Acceleration (1-Hz SA) in probabilistic seismic hazard maps (10% probability of exceedance in 50 years) of Northern and Central Italy. The uncertainty in hazard is estimated using a Monte Carlo approach to randomly sample a logic tree that has three input-variables branch points representing alternative values for bvalue, maximum magnitude (Mmax) and attenuation relationships. Uncertainty is expressed in terms of 95% confidence band and Coefficient Of Variation (COV). The overall variability of ground motions and their sensitivity to each parameter of the logic tree are investigated. The largest values of the overall 95% confidence band are around 0.15 g for PGA in the Friuli and Northern Apennines regions and around 0.35 g for 1-Hz SA in the Central Apennines. The sensitivity analysis shows that the largest contributor to seismic hazard variability is uncertainty in the choice of ground-motion attenuation relationships, especially in the Friuli Region (?0.10 g) for PGA and in the Friuli and Central Apennines regions (?0.15 g) for 1-Hz SA. This is followed by the variability of the b-value: its main contribution is evident in the Friuli and Central Apennines regions for both 1-Hz SA (?0.15 g) and PGA (?0.10 g). We observe that the contribution of Mmax to seismic hazard variability is negligible, at least for 10% exceedance in 50-years hazard. The overall COV map for PGA shows that the uncertainty in the hazard is larger in the Friuli and Northern Apennine regions, around 20-30%, than the Central Apennines and Northwestern Italy, around 10-20%. The overall uncertainty is larger for the 1-Hz SA map and reaches 50- 60% in the Central Apennines and Western Alps

    The 2012 Ferrara seismic sequence: from a 1D reliable crustal structure for moment tensor solutions to strong implications for seismic hazard

    Get PDF
    On May 20 2012, an event of Ml 5.9 (Mw 5.6) stuck the southem edge of the Po river plain (Pianura Padana). The earthquake was preceded by a foreshock of Ml 4.1 (Mw 3.8), less than 3 hours before the Mw 5.6 main. Hypocentral depths were 6.3 km for both events. Centroid depths were 5 and 6 km, respectively. The activated fault was a reverse one, dipping to the south. Then a complex seismic sequence started, in which more than six earthquakes with Ml greater than 5 stuck the area, the last one on June 3, 2012. Aftershocks delineated a 50 km long and 10-15 km wide zone, approximately elongated in the WE direction. More than 2100 events were located between May 19 and June 25 2012 by the INGV National Seismic Network, 80 of them with Ml greater than 3.5. The damage due to the Ml 5+ earthquakes was widespread, as they severely hit historical towns and industrial infrastructures. However, a striking inconsistency exists between the relatively small moment magnitudes and the corrisponding high level of damage. In order to define a velocity structure for the crust beneath the Pianura Padana, to be used for waveform inversion of moment tensors, we gathered all the geophysical and geological information available for the area. The model is characterized by very thick and shallow Quaternary sediments, to be used for the inversion of broadband waveforms for moment tensor (MT) solutions, in the frequency band between 0.02-0.1 Hz. We calculated moment tensors for 20 events down to Mw~3.2. We demonstrate how surface waves dominate the seismograms in the region, which may have played a major role in enhancing the damage to industrial structures observed in the epicentral area. Synthetic seismograms computed using the developed model well reproduced the anomalous durations of the ground motion observed in Pianura Padana, also highlighting important implications for the seismic hazard in the entire area. The present seismic hazard assessment as well as the size of the historical earthquakes in the region (and so their recurrence times), may need to be re-evaluated in the light of this new results

    Scattering Attenuation Images of the Control of Thrusts and Fluid Overpressure on the 2016–2017 Central Italy Seismic Sequence

    Get PDF
    Deep fluid circulation likely triggered the large extensional events of the 2016–2017 Central Italy seismic sequence. Nevertheless, the connection between fault mechanisms, main crustal-scale thrusts, and the circulation and interaction of fluids with tectonic structures controlling the sequence is still debated. Here, we show that the 3D temporal and spatial mapping of peak delays, proxy of scattering attenuation, detects thrusts and sedimentary structures and their control on fluid overpressure and release. After the mainshocks, scattering attenuation drastically increases across the hanging wall of the Monti Sibillini and Acquasanta thrusts, revealing fracturing and fluid migration. Before the sequence, low-scattering volumes within Triassic formations highlight regions of fluid overpressure, which enhances rock compaction. Our results highlight the control of thrusts and paleogeography on the sequence and hint at the monitoring potential of the technique for the seismic hazard assessment of the Central Apennines and other tectonic regions

    Results from shallow geophysical investigations in the northwestern sector of the island of Malta

    Get PDF
    We performed geophysical investigations in the northwestern sector of the island of Malta to reconstruct velocity-depth models and provide shear-wave velocity profiles. We have chosen two sites, one located in Rabat (Malta) and another in the Golden Bay area. We used both active (seismic and electrical 2D-tomography, Multichanel Analysis of Surface Waves – MASW) and passive (2D arrays and single-station measurements using ambient noise) geophysical methods. Consistently with previous studies performed in this part of Malta, we have found that both sites are characterised by site resonance in the frequency range 1-2 Hz as an effect of the local lithostratigraphic succession that shows an impedance contrast at about 60-90 m depth. This resonance effect can have important implications on both seismic hazard as well as seismic risk evaluation of the region since the amplified frequency range coincides with the resonance frequencies typical of 5–10 storey buildings which are very diffuse in the Maltese Islands, especially after intense recent urbanization.Published41-484T. Sismologia, geofisica e geologia per l'ingegneria sismicaJCR Journa

    Seismological constraints for the dyke emplacement of the July-August 2001 lateral eruption at Mt. Etna volcano, Italy

    Get PDF
    In this paper we report seismological evidence regarding the emplacement of the dike that fed the July 18 - August 9, 2001 lateral eruption at Mt. Etna volcano. The shallow intrusion and the opening of the eruptive fracture system, which mostly occurred during July 12, and July 18, were accompanied by one of the most intense seismic swarms of the last 20 years. A total of 2694 earthquakes (1 ÂŁ Md ÂŁ 3.9) were recorded from the beginning of the swarm (July 12) to the end of the eruption (August 9). Seismicity shows the upward migration of the dike from the basement to the relatively thin volcanic pile. A clear hypocentral migration was observed, well constraining the upwards propagation of a near-vertical dike, oriented roughly N-S, and located a few kilometers south of the summit region. Earthquake distribution and orientation of the P-axes from focal mechanisms indicate that the swarm was caused by the local stress source related to the dike intrusion
    corecore