7 research outputs found

    4-Cyclohexyl-1-(2-methoxybenzoyl)thiosemicarbazide with an unknown solvent

    No full text
    In the title compound, C15H21N3O2S, a short intramolecular N—H...O hydrogen bond generates an S(6) ring. The molecule is twisted with a dihedral angle between the benzene ring and the mean plane of the cyclohexyl ring being 58.90 (6)°. In the crystal, inversion dimers are formed with each molecule linked to the other by two N—H(H)...O hydrogen bonds to the same acceptor, generating R21(6) loops. A region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015). Acta Cryst. C71, 9–18]. The given chemical formula and other crystal data do not take into account the unknown solvent molecule(s)

    Polyaniline-Based Highly Sensitive Microbial Biosensor for Selective Detection of Lindane

    No full text
    A highly sensitive, selective, and rapid, whole-cell-based electrochemical biosensor was developed for detection of the persistent organochlorine pesticide γ-hexachlorocyclohexane (γ-HCH), commonly known as lindane. The gene <i>linA2</i> encoding the enzyme γ-hexachlorocyclohexane (HCH) dehydrochlorinase (LinA2), involved in the initial steps of lindane (γ-HCH) biotransformation, was cloned and overexpressed in Escherichia coli. The lindane-biodegrading E. coli cells were immobilized on polyaniline film. The rapid and selective degradation of lindane and concomitant generation of hydrochloric acid by the recombinant E. coli cells in the microenvironment of polyaniline led to a change in its conductivity, which was monitored by pulsed amperometry. The biosensor could detect lindane in the part-per-trillion concentration range with a linear response from 2 to 45 ppt. The sensor was found to be selective to all the isomers of hexachlorocyclohexane (HCH) and to pentachlorocyclohexane (PCCH) but did not respond to other aliphatic and aromatic chlorides or to the end product of lindane degradation, i.e., trichlorobenzene (TCB). The sensor also did not respond to other commonly used organochlorine pesticides like DDT and DDE. On the basis of experimental results, a rationale has been proposed for the excellent sensitivity of polyaniline as a pH sensor for detection of H<sup>+</sup> ions released in its microenvironment

    Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: A cohort study

    No full text
    Background: Sepsis is one of the most common causes of neonatal deaths globally. Most sepsis-related deaths occur in low-income and middle-income countries, where the epidemiology of neonatal sepsis remains poorly understood. Most of these countries lack proper surveillance networks, hampering accurate assessment of the burden of sepsis, implementation of preventive measures, and investment in research. We report results of neonates born in hospital from a multicentre collaboration on neonatal sepsis. Methods: In this cohort study, dedicated research teams prospectively followed up neonates born in one of three tertiary care centres in Delhi, India (Vardhaman Mahavir Medical College, Maulana Azad Medical College, and All India Institute of Medical Sciences [coordinating centre]) and subsequently admitted to the intensive care unit. Neonates were followed up daily until discharge or death. On clinical suspicion, neonates underwent sepsis work-up including blood cultures. The isolated organisms were identified and tested for antimicrobial susceptibility. We defined Gram-negative isolates resistant to any three of five antibiotic classes (extended-spectrum cephalosporins, carbapenems, aminoglycosides, fluoroquinolones, and piperacillin-tazobactam) as multidrug resistant. Findings: 13 530 neonates of 88 636 livebirths were enrolled between July 18, 2011, and Feb 28, 2014. The incidence of total sepsis was 14·3% (95% CI 13·8–14·9) and of culture-positive sepsis was 6·2% (5·8–6·6). Nearly two-thirds of total episodes occurred at or before 72 h of life (defined as early onset; 1351 [83%] of 1980). Two-thirds (645 [64%]) of 1005 isolates were Gram-negative including, Acinetobacter spp (22%), Klebsiella spp (17%), and Escherichia coli (14%). The pathogen mix in early-onset sepsis did not differ from that of late-onset sepsis (ie, after 72 h). High rates of multidrug resistance were observed in Acinetobacter spp (181/222, 82%), Klebsiella spp (91/169, 54%), and Escherichia coli (52/137, 38%) isolates. Meticillin resistance prevailed in 61% (85/140) of coagulase-negative staphylococci and 38% (43/114) of Staphylococcus aureus isolates. Nearly a quarter of the deaths were attributable to sepsis. The population-attributable risks of mortality were 8·6% in culture-negative sepsis, 15·7% in culture-positive sepsis by multidrug-resistant organisms, and 12·0% in culture-positive sepsis by non-multidrug-resistant organisms. Interpretation: The high incidence of sepsis and alarming degree of antimicrobial resistance among pathogens in neonates born in tertiary hospitals underscore the need to understand the pathogenesis of early-onset sepsis and to devise measures to prevent it in low-income and middle-income countries. Funding: Indian Council of Medical Researc
    corecore