347 research outputs found
Hydrodynamic signatures of stationary Marangoni-driven surfactant transport
We experimentally study steady Marangoni-driven surfactant transport on the
interface of a deep water layer. Using hydrodynamic measurements, and without
using any knowledge of the surfactant physico-chemical properties, we show that
sodium dodecyl sulphate and Tergitol 15-S-9 introduced in low concentrations
result in a flow driven by adsorbed surfactant. At higher surfactant
concentration, the flow is dominated by the dissolved surfactant. Using
Camphoric acid, whose properties are {\it a priori} unknown, we demonstrate
this method's efficacy by showing its spreading is adsorption dominated
HTA: A Scalable High-Throughput Accelerator for Irregular HPC Workloads
We propose a new architecture called HTA for high throughput irregular HPC applications with little data reuse. HTA reduces the contention within the memory system with the help of a partitioned memory controller that is amenable for 2.5D implementation using Silicon Photonics. In terms of scalability, HTA supports 4 × higher number of compute units compared to the state-of-the-art GPU systems. Our simulation-based evaluation on a representative set of HPC benchmarks shows that the proposed design reduces the queuing latency by 10% to 30%, and improves the variability in memory access latency by 10% to 60%. Our results show that the HTA improves the L1 miss penalty by 2.3 × to 5 × over GPUs. When compared to a multi-GPU system with the same number of compute units, our simulation results show that the HTA can provide up to 2 × speedup
LLM: Realizing Low-Latency Memory by Exploiting Embedded Silicon Photonics for Irregular Workloads
As emerging workloads exhibit irregular memory access patterns with poor data reuse and locality, they would benefit from a DRAM that achieves low latency without sacrificing bandwidth and energy efficiency. We propose LLM (Low Latency Memory), a codesign of the DRAM microarchitecture, the memory controller and the LLC/DRAM interconnect by leveraging embedded silicon photonics in 2.5D/3D integrated system on chip. LLM relies on Wavelength Division Multiplexing (WDM)-based photonic interconnects to reduce the contention throughout the memory subsystem. LLM also increases the bank-level parallelism, eliminates bus conflicts by using dedicated optical data paths, and reduces the access energy per bit with shorter global bitlines and smaller row buffers. We evaluate the design space of LLM for a variety of synthetic benchmarks and representative graph workloads on a full-system simulator (gem5). LLM exhibits low memory access latency for traffics with both regular and irregular access patterns. For irregular traffic, LLM achieves high bandwidth utilization (over 80% peak throughput compared to 20% of HBM2.0). For real workloads, LLM achieves 3 × and 1.8 × lower execution time compared to HBM2.0 and a state-of-the-art memory system with high memory level parallelism, respectively. This study also demonstrates that by reducing queuing on the data path, LLM can achieve on average 3.4 × lower memory latency variation compared to HBM2.0
Вимоги видавничого відділу ІМФЕ ім. М. Т. Рильського до оформлення авторами рукописів
Industrial parts are manufactured to tolerances as no production process is capable of delivering perfectly identical parts. It is unacceptable that a plan for a manipulation task that was determined on the basis of a CAD model of a part fails on some manufactured instance of that part, and therefore it is crucial that the admitted shape variations are systematically taken into account during the planning of the task. We study the problem of orienting a part with given admitted shape variations by means of pushing with a single frictionless jaw. We use a very general model for admitted shape variations that only requires that any valid instance must contain a given convex polygon PI while it must be contained in another convex polygon PE. The problem that we solve is to determine, for a given h, the sequence of h push actions that puts all valid instances of a part with given shape variation into the smallest possible interval of final orientations. The resulting algorithm runs in O(hn) time, where n=|PI|+|PE|
Distributed Adaptive Attitude Synchronization of Multiple Spacecraft
This paper addresses the distributed attitude synchronization problem of
multiple spacecraft with unknown inertia matrices. Two distributed adaptive
controllers are proposed for the cases with and without a virtual leader to
which a time-varying reference attitude is assigned. The first controller
achieves attitude synchronization for a group of spacecraft with a leaderless
communication topology having a directed spanning tree. The second controller
guarantees that all spacecraft track the reference attitude if the virtual
leader has a directed path to all other spacecraft. Simulation examples are
presented to illustrate the effectiveness of the results.Comment: 13 pages, 11 figures. To appear in SCIENCE CHINA Technological
Science
Progress and Challenges in Short to Medium Range Coupled Prediction
The availability of GODAE Oceanview-type ocean forecast systems provides the opportunity to develop high-resolution, short- to medium-range coupled prediction systems. Several groups have undertaken the first experiments based on relatively unsophisticated approaches. Progress is being driven at the institutional level targeting a range of applications that represent their respective national interests with clear overlaps and opportunities for information exchange and collaboration. These include general circulation, hurricanes, extra-tropical storms, high-latitude weather and sea-ice forecasting as well as coastal air-sea interaction. In some cases, research has moved beyond case and sensitivity studies to controlled experiments to obtain statistically significant metrics
Robust grasping under object pose uncertainty
This paper presents a decision-theoretic approach to problems that require accurate placement of a robot relative to an object of known shape, such as grasping for assembly or tool use. The decision process is applied to a robot hand with tactile sensors, to localize the object on a table and ultimately achieve a target placement by selecting among a parameterized set of grasping and information-gathering trajectories. The process is demonstrated in simulation and on a
real robot. This work has been previously presented in Hsiao et al. (Workshop on Algorithmic Foundations of Robotics (WAFR), 2008; Robotics Science and Systems (RSS), 2010) and Hsiao (Relatively robust grasping, Ph.D. thesis, Massachusetts Institute of Technology, 2009).National Science Foundation (U.S.) (Grant 0712012
Molecular Analysis of Serum and Bronchoalveolar Lavage in a Mouse Model of Influenza Reveals Markers of Disease Severity That Can Be Clinically Useful in Humans
Background:
Management of influenza, a major contributor to the worldwide disease burden, is complicated by lack of reliable methods for early identification of susceptible individuals. Identification of molecular markers that can augment existing diagnostic tools for prediction of severity can be expected to greatly improve disease management capabilities.
Methodology/Principal Findings:
We have analyzed cytokines, proteome flux and protein adducts in bronchoalveolar lavage (BAL) and sera from mice infected with influenza A virus (PR8 strain) using a previously established non-lethal model of influenza infection. Through detailed cytokine and protein adduct measurements of murine BAL, we first established the temporal profile of innate and adaptive responses as well as macrophage and neutrophil activities in response to influenza infection. A similar analysis was also performed with sera from a longitudinal cohort of influenza patients. We then used an iTRAQ-based, comparative serum proteome analysis to catalog the proteome flux in the murine BAL during the stages correlating with “peak viremia,” “inflammatory damage,” as well as the “recovery phase.” In addition to activation of acute phase responses, a distinct class of lung proteins including surfactant proteins was found to be depleted from the BAL coincident with their “appearance” in the serum, presumably due to leakage of the protein following loss of the integrity of the lung/epithelial barrier. Serum levels of at least two of these proteins were elevated in influenza patients during the febrile phase of infection compared to healthy controls or to the same patients at convalescence.
Conclusions/Significance:
The findings from this study provide a molecular description of disease progression in a mouse model of influenza and demonstrate its potential for translation into a novel class of markers for measurement of acute lung injury and improved case management.Singapore. National Research FoundationSingapore-MIT Alliance for Research and Technology (ID-IRG research program
Fluorophore Labeled Kinase Detects Ligands That Bind within the MAPK Insert of p38α Kinase
The vast majority of small molecules known to modulate kinase activity, target the highly conserved ATP-pocket. Consequently, such ligands are often less specific and in case of inhibitors, this leads to the inhibition of multiple kinases. Thus, selective modulation of kinase function remains a major hurdle. One of the next great challenges in kinase research is the identification of ligands which bind to less conserved sites and target the non-catalytic functions of protein kinases. However, approaches that allow for the unambiguous identification of molecules that bind to these less conserved sites are few in number. We have previously reported the use of fluorescent labels in kinases (FLiK) to develop direct kinase binding assays that exclusively detect ligands which stabilize inactive (DFG-out) kinase conformations. Here, we present the successful application of the FLiK approach to develop a high-throughput binding assay capable of directly monitoring ligand binding to a remote site within the MAPK insert of p38α mitogen-activated protein kinase (MAPK). Guided by the crystal structure of an initially identified hit molecule in complex with p38α, we developed a tight binding ligand which may serve as an ideal starting point for further investigations of the biological function of the MAPK insert in regulating the p38α signaling pathway
- …