63 research outputs found

    A determination of electroweak parameters from Z0→μ+μ- (γ)

    Full text link

    Measurement of Z0 decays to hadrons, and a precise determination of the number of neutrino species

    Get PDF
    We have made a precise measurement of the cross section for e+e--->Z0-->hadrons with the L3 detector at LEP, covering the range from 88.28 to 95.04 GeV. From a fit to the Z0 mass, total width, and the hadronic cross section to be MZ0=91.160 +/- 0.024 (experiment) +/-0.030(LEP) GeV, [Gamma]Z0=2.539+/-0.054 GeV, and [sigma]h(MZ0)=29.5+/-0.7 nb. We also used the fit to the Z0 peak cross section and the width todetermine [Gamma]invisible=0.548+/-0.029 GeV, which corresponds to 3.29+/-0.17 species of light neutrinos. The possibility of four or more neutrino flavors is thus ruled out at the 4[sigma] confidence level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28683/3/0000500.pd

    A measurement of the Z0 leptonic partial widths and the vector and axial vector coupling constants

    Get PDF
    We have measured the partial widths of the Z0 into lepton pairs, and the forward-backward charge asymmetry for the process e+e--->[mu]+[mu]- using the L3 detector at LEP. We obtain an average [Gamma]ll of 83.0+/-2.1+/-1.1 MeV.From this result and the asymmetry measurement, we extract the values of the vector and axial vector couplings of the Z0 to leptons: grmv=-0.066-0.027+0.046 and grmA= -0.495-0.007+0.007.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28666/3/0000483.pd

    Search for excited taus from Z0 decays

    Full text link

    Test of QED in e+e−→γγ at LEP

    Full text link

    Measurement of inclusive η production in hadronic decays of the Z0

    Full text link

    A measurement of τ polarization in Z0 decays

    Full text link

    Prediction of Hardness of Copper-based Nanocomposites Fabricated by Ball-milling using Artificial Neural Network

    Get PDF
    Copper-based alloys are one of the most popular materials in the power distribution, welding industry, hydraulic equipment, industrial machinery, etc. Among different methods for the fabrication of Cu alloys, mechanical alloying (MA) is the major approach due to the fact that this approach is simple, inexpensive, suitable for mass production, and has a high capacity for homogeneous distribution of the second phase. However, the prediction of the hardness of products is very difficult in MA because of a lot of effective parameters. In this work, we designed a feed-forward back propagation neural network (FFBPNN) to predict the hardness of copper-based nanocomposites. First, some of the most common nanocomposites of copper including Cu-Al, Cu-Al2O3, Cu-Cr, and Cu-Ti were synthesized by mechanical alloying of copper at varying weight percentages (1, 3, and 6). Next, the alloyed powders were compacted by a cold press (12 tons) and subjected to heat treatment at 650.C. Then, the strength of the alloys was measured by the Vickers microscopy test. Finally, to anticipate the micro-hardness of Cu nanocomposites, the significant variables in the ball milling process including hardness, size, and volume of the reinforcement material, vial speed, the ball-to-powder-weight-ratio (BPR), and milling time; were determined as the inputs, and hardness of nanocomposite was assumed as an output of the artificial neural network (ANN). For training the ANN, many different ANN architectures have been employed and the optimal structure of the model was obtained by regression of 0.9914. The network was designed with two hidden layers. The first and second hidden layer includes 12 and 8 neurons, respectively. The comparison between the predicted results of the network and the experimental values showed that the proposed model with a root mean square error (RMSE) of 3.7 % can predict the microhardness of the nanocomposites

    A rule-based approach to syntactic and semantic composition of BOMs

    No full text
    10.1109/DS-RT.2007.10Proceedings - IEEE International Symposium on Distributed Simulation and Real-Time Applications, DS-RT145-15
    corecore