15 research outputs found

    Silkworm Pupae Function as Efficient Producers of Recombinant Glycoproteins with Stable-Isotope Labeling

    Get PDF
    Baculovirus-infected silkworms are promising bioreactors for producing recombinant glycoproteins, including antibodies. Previously, we developed a method for isotope labeling of glycoproteins for nuclear magnetic resonance (NMR) studies using silkworm larvae reared on an artificial diet containing 15N-labeled yeast crude protein extract. Here, we further develop this method by introducing a technique for the expression of isotope-labeled glycoproteins by silkworm pupae, which has several potential advantages relative to larvae-based techniques in terms of production yield, ease of handling, and storage. Here, we fed fifth instar larvae an artificial diet with an optimized composition containing [methyl-13C]methionine, leading to pupation. Nine-day-old pupae were then injected with recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid for expression of recombinant human immunoglobulin G (IgG). From the whole-body homogenates of pupae, 0.35 mg/pupa of IgG was harvested, which is a yield that is five times higher than can be obtained from larvae. Recombinant IgG, thus prepared, exhibited mainly three kinds of pauci-mannose-type oligosaccharides and had a 13C-enrichment ratio of approximately 80%. This enabled selective observation of NMR signals originating from the methionyl methyl group of IgG, confirming its conformational integrity. These data demonstrate the utility of silkworm pupae as factories for producing recombinant glycoproteins with amino-acid-selective isotope labeling

    Cynomolgus macaque TRIMCyp-resistant HIV-1

    Get PDF
    Old World monkey TRIM5α strongly suppresses human immunodeficiency virus type 1 (HIV-1) replication. A fusion protein comprising cynomolgus macaque (CM) TRIM5 and cyclophilin A (CM TRIMCyp) also potently suppresses HIV-1 replication. However, CM TRIMCyp fails to suppress a mutant HIV-1 that encodes a mutant capsid protein containing a SIVmac239-derived loop between α-helices 4 and 5 (L4/5). There are seven amino acid differences between L4/5 of HIV-1 and SIVmac239. Here, we investigated the minimum numbers of amino acid substitutions that would allow HIV-1 to evade CM TRIMCyp-mediated suppression. We performed random PCR mutagenesis to construct a library of HIV-1 variants containing mutations in L4/5, and then we recovered replication-competent viruses from CD4+ MT4 cells that expressed high levels of CM TRIMCyp. CM TRIMCyp-resistant viruses were obtained after three rounds of selection in MT4 cells expressing CM TRIMCyp and these were found to contain four amino acid substitutions (H87R, A88G, P90D and P93A) in L4/5. We then confirmed that these substitutions were sufficient to confer CM TRIMCyp resistance to HIV-1. In a separate experiment using a similar method, we obtained novel CM TRIM5α-resistant HIV-1 strains after six rounds of selection and rescue. Analysis of these mutants revealed that V86A and G116E mutations in the capsid region conferred partial resistance to CM TRIM5α without substantial fitness cost when propagated in MT4 cells expressing CM TRIM5α. These results confirmed and further extended the previous notion that CM TRIMCyp and CM TRIM5α recognize the HIV-1 capsid in different manners

    PIM kinases facilitate lentiviral evasion from SAMHD1 restriction via Vpx phosphorylation

    Get PDF
    Lentiviruses have evolved to acquire an auxiliary protein Vpx to counteract the intrinsic host restriction factor SAMHD1. Although Vpx is phosphorylated, it remains unclear whether such phosphorylation indeed regulates its activity toward SAMHD1. Here we identify the PIM family of serine/threonine protein kinases as the factors responsible for the phosphorylation of Vpx and the promotion of Vpx-mediated SAMHD1 counteraction. Integrated proteomics and subsequent functional analysis reveal that PIM family kinases, PIM1 and PIM3, phosphorylate HIV-2 Vpx at Ser13 and stabilize the interaction of Vpx with SAMHD1 thereby promoting ubiquitin-mediated proteolysis of SAMHD1. Inhibition of the PIM kinases promotes the antiviral activity of SAMHD1, ultimately reducing viral replication. Our results highlight a new mode of virus–host cell interaction in which host PIM kinases facilitate promotion of viral infectivity by counteracting the host antiviral system, and suggest a novel therapeutic strategy involving restoration of SAMHD1-mediated antiviral response

    Analysis of hoxa11 and hoxa13 expression during patternless limb regeneration in Xenopus

    Get PDF
    AbstractDuring limb regeneration, anuran tadpoles and urodele amphibians generate pattern-organizing, multipotent, mesenchymal blastema cells, which give rise to a replica of the lost limb including patterning in three dimensions. To facilitate the regeneration of nonregenerative limbs in other vertebrates, it is important to elucidate the molecular differences between blastema cells that can regenerate the pattern of limbs and those that cannot. In Xenopus froglet (soon after metamorphosis), an amputated limb generates blastema cells that do not produce proper patterning, resulting in a patternless regenerate, a spike, regardless of the amputation level. We found that re-expression of hoxa11 and hoxa13 in the froglet blastema is initiated although the subsequent proximal–distal patterning, including separation of the hoxa11 and hoxa13 expression domains, is disrupted. We also observed an absence of EphA4 gene expression in the froglet blastema and a failure of position-dependent cell sorting, which correlated with the altered hoxa11 and hoxa13 expression. Quantitative analysis of hoxa11 and hoxa13 expression revealed that hoxa13 transcript levels were reduced in the froglet blastema compared with the tadpole blastema. Moreover, the expression of sox9, an important regulator of chondrogenic differentiation, was detected earlier in patternless blastemas than in tadpole blastemas. These results suggest that appropriate spatial, temporal, and quantitative gene expression is necessary for pattern regeneration by blastema cells

    Comparative Analysis of Derivatization Reagents for Catecholamines and Amino Acids

    No full text
    We compared four derivatization reagents to analyze catecholamines and amino acids by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. 2,4,6-Trimethylpyrylium tetrafluoroborate (TMPy), 2,4-diphenyl-pyranylium tetrafluoroborate (DPP-TFB), 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide (FMP-10), and triphenyl pyrilium (TPP) were used as derivatization reagents that can specifically modify primary amines or hydroxy groups in target molecules. Three derivatization reagents, not including TPP, reacted with all target molecules. The derived catecholamines dopamine and L-DOPA, and the amino acids GABA and glycine, were efficiently ionized in comparison with non-derivatized targets. Comparative analysis indicated that TMPy and FMP-10 produced general increases in signal-to-noise ratios (S/N), whereas DPP and TPP produced specific increases in the S/N of GABA and DA. Notably, TMPy is a small molecule that efficiently reacts with target molecules due to the absence of high bulk and steric hinderance

    Pharmacokinetic/pharmacodynamic evaluation of teicoplanin against Staphylococcus aureus in a murine thigh infection model

    No full text
    Objectives: Pharmacokinetic/pharmacodynamic (PK/PD) analysis using murine infection models is a well-established methodology for optimising antimicrobial therapy. Therefore, we investigated the PK/PD indices of teicoplanin againstStaphylococcus aureus using a murine thigh infection model. Methods: Mice were rendered neutropenic by administration of a two-step dosing of cyclophosphamide. Then, isolates of methicillin-susceptibleS. aureus (MSSA) or methicillin-resistant S. aureus (MRSA) were inoculated into the thighs of neutropenic mice. PK/PD analyses were performed by non-linear least-squared regression using the MULTI program. Results: Target values offCmax/MIC (r2 = 0.94) of teicoplanin for static effect and 1 log10 kill against MSSA were 4.44 and 15.44, respectively. Target values of fAUC24/MIC (r2 = 0.92) of teicoplanin for static effect and 1 log10 kill against MSSA were 30.4 and 70.56, respectively. Target values of fCmax/MIC (r2 = 0.91) of teicoplanin for static effect and 1 log10 kill against MRSA were 8.92 and 14.16, respectively. Target values of fAUC24/MIC (r2 = 0.92) of teicoplanin for static effect and 1 log10 kill against MRSA were 54.8 and 76.4, respectively. Conclusion: These results suggest thatfCmax/MIC and fAUC24/MIC are useful PK/PD indices of teicoplanin against MSSA and MRSA

    Sex Differences in Salivary Oxytocin and Cortisol Concentration Changes during Cooking in a Small Group

    No full text
    Background: Oxytocin (OT), a neuropeptide, has positive effects on social and emotional processes during group activities. Because cooking is an integrated process in the cognitive, physical, and socio-emotional areas, cooking in a group is reported to improve emotion and cognition. However, evidence for efficacy in group cooking has not been well established at the biological level. Methods: To address this shortcoming, we first measured salivary levels of OT and cortisol (CORT), a biomarker of psychological stress, before and after group cooking for approximately 1 h by people who know each other in healthy married or unmarried men and women. We then compared the initial OT and CORT concentrations with those during individual non-cooking activities in isolation. Results: Baseline OT concentrations before group and non-group sessions did not significantly differ and OT levels increased after both types of activity in men and women. In men, however, the percentage changes of OT levels in the first over the second saliva samples were significantly small during cooking compared with those in individual activities. In women, however, such a difference was not observed. In contrast, the mean salivary CORT concentrations after group cooking were significantly decreased from the baseline level in both sexes, though such decreases were not significant after individual activity sessions. The sex-specific differences were marital-status independent. Conclusion: These results indicate that OT and CORT concentrations after two activity sessions by a familiar group changed in opposite directions in a sex-specific manner. This suggests that, because cooking is experience-based, we need to consider the sex-specific features of group cooking if we apply it for intervention

    Large-gap magnetic topological heterostructure formed by subsurface incorporation of a ferromagnetic layer

    No full text
    Inducing magnetism into topological insulators is intriguing for utilizing exotic phenomena such as the quantum anomalous Hall effect (QAHE) for technological applications. While most studies have focused on doping magnetic impurities to open a gap at the surface-state Dirac point, many undesirable effects have been reported to appear in some cases that makes it difficult to determine whether the gap opening is due to the time-reversal symmetry breaking or not. Furthermore, the realization of the QAHE has been limited to low temperatures. Here we have succeeded in generating a massive Dirac cone in a MnBiSe/BiSe heterostructure, which was fabricated by self-assembling a MnBiSe layer on top of the BiSe surface as a result of the codeposition of Mn and Se. Our experimental results, supported by relativistic ab initio calculations, demonstrate that the fabricated MnBiSe/BiSe heterostructure shows ferromagnetism up to room temperature and a clear Dirac cone gap opening of ∼100 meV without any other significant changes in the rest of the band structure. It can be considered as a result of the direct interaction of the surface Dirac cone and the magnetic layer rather than a magnetic proximity effect. This spontaneously formed self-assembled heterostructure with a massive Dirac spectrum, characterized by a nontrivial Chern number C = -1, has a potential to realize the QAHE at significantly higher temperatures than reported up to now and can serve as a platform for developing future >topotronics> devices.This work has been supported by Grants-In-Aid from Japan Society for the Promotion of Science (Nos. 15H05453, 16K13683, 19340078, and 23244066), the Toray Science Foundation, the Basque Country Government, Departamento de Educacion, Universidades e Investigacion (Grant No. IT-756-13), the Spanish Ministry of Science and Innovation (Grant Nos. FIS2010-19609-C02-01, FIS2013- 48286-C02-02-P, and FIS2013-48286-C02-01-P), the Tomsk State University Academic D.I. Mendeleev Fund Program (Grant No. 8.1.05.2015), and Saint Petersburg State University (project 15.61.202.2015). The ARPES experiments were performed under the UVSOR Proposal Nos. 25-808, 26-531, 27-533, 28-526, and S-15-MS-0034, and the SARPES experiments were performed under the HiSOR Proposal No. 15-A14. The XMCD measurements were performed under the UVSOR proposal number S-16-MS-2017. The LEED measurements were performed under the ISSP Proposal number H17-A250. The SQUID measurements were performed using facilities of the Cryogenic Research Center, the University of Tokyo.Peer Reviewe
    corecore