Analysis of \textit{hoxa11} and \textit{hoxa13} expression during patternless limb regeneration in \textit{Xenopus}

Shiro Ohgo, Akari Itoh, Makoto Suzuki, Akira Satoh, Hitoshi Yokoyama, Koji Tamura *

Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama Aoba-ku, Sendai 980-8578, Japan

Abstract

During limb regeneration, anuran tadpoles and urodele amphibians generate pattern-organizing, multipotent, mesenchymal blastema cells, which give rise to a replica of the lost limb including patterning in three dimensions. To facilitate the regeneration of nonregenerative limbs in other vertebrates, it is important to elucidate the molecular differences between blastema cells that can regenerate the pattern of limbs and those that cannot. In \textit{Xenopus} froglet (soon after metamorphosis), an amputated limb generates blastema cells that do not produce proper patterning, resulting in a patternless regenerate, a spike, regardless of the amputation level. We found that re-expression of \textit{hoxa11} and \textit{hoxa13} in the froglet blastema is initiated although the subsequent proximal-distal patterning, including separation of the \textit{hoxa11} and \textit{hoxa13} expression domains, is disrupted. We also observed an absence of \textit{EphA4} gene expression in the froglet blastema and a failure of position-dependent cell sorting, which correlated with the altered \textit{hoxa11} and \textit{hoxa13} expression. Quantitative analysis of \textit{hoxa11} and \textit{hoxa13} expression revealed that \textit{hoxa13} transcript levels were reduced in the froglet blastema compared with the tadpole blastema. Moreover, the expression of \textit{sox9}, an important regulator of chondrogenic differentiation, was detected earlier in patternless blastemas than in tadpole blastemas. These results suggest that appropriate spatial, temporal, and quantitative gene expression is necessary for pattern regeneration by blastema cells.

Introduction

Urodele amphibians, including newts and salamanders, can perfectly regenerate limbs that have been amputated at any point during their lives. On the other hand, the anuran amphibian \textit{Xenopus laevis} shows a developmental change in its ability to regenerate limbs. Although \textit{Xenopus} tadpoles can regenerate limb buds after amputation, this ability gradually declines as metamorphosis progresses. The froglet can regenerate only spike-like cartilaginous structures that lack proper patterning (Dent, 1962; reviewed by Suzuki et al., 2006; Yokoyama, 2008). Thus, it is possible to use \textit{Xenopus} to compare regeneration-competent and regeneration-incompetent limbs in the same species. Moreover, elucidation of why regeneration fails in metamorphosed anuran amphibians as compared with regeneration in anuran tadpoles and urodele amphibians may provide a foundation for achieving organ regeneration in regeneration-incompetent vertebrates.

The development of a three-dimensional limb structure relies on pattern formation along three axes: the anterior–posterior (AP), dorsal–ventral (DV) and proximal–distal (PD) axes (reviewed by Capdevila and Izpisua Belmonte, 2001). During limb regeneration in urodeles and in \textit{Xenopus} tadpoles, the expression profiles of pattern formation regulators along the three axes are similar to those observed in limb development. These regulators include \textit{shh} for the AP axis (Endo et al., 1997; Imokawa and Yoshizato, 1997; Torok et al., 1999), \textit{lmx}-1 for the DV axis (Matsuda et al., 2001), and \textit{hoxa13} for the PD axis (Endo et al., 2000; Christen et al., 2003; Satoh et al., 2006), are similar to those observed during limb development. The formation of patternless regenerates in the \textit{Xenopus} froglet is thought to be associated with a failure to reactivate \textit{shh} expression for AP axis patterning (Endo et al., 2000; Yakushiji et al., 2007). However, the relationship of pattern regulators to the formation of the other axes in regeneration is largely unknown. In the PD axis of the \textit{Xenopus} froglet limb, only the expression of \textit{hoxa13} has been examined during regeneration. The results suggested that positional information along the PD axis is normal and that PD patterning is initiated in the froglet blastema (Endo et al., 2000). The full explanation appears more complex because the froglet limb regenerate, the spike, is a “patternless” regenerate that does not have segments/joints along the PD axis. Furthermore, the spike shows similar morphology regardless of the amputation level. Thus, further studies are required to determine why \textit{hoxa13} re-expression in the blastema fails to direct pattern formation, resulting in patternless regenerates independent of the level of amputation.

\textit{HoxA} transcription factors are thought to be involved in PD patterning during limb development. \textit{hoxa13} and \textit{hoxa11} show a
nested pattern of expression during early limb development in amniote embryos; hoxa13 expression is initiated and restricted more distally within the hoxa11 expression domain. Thereafter, each expression domain is separated along the PD axis, with the hoxa11 positive cells forming the prospective zeugopod region, whereas the hoxa13 expressing cells comprise the autopod (Yokouchi et al., 1991; Nelson et al., 1996; Sato et al., 2007; Tabin and Wolpert, 2007; Tamura et al., 2008; Tamura et al., in press). Additionally, the Hox genes are thought to regulate the surface properties of the cells. Cell sorting assays have shown that developing limb bud cells along the PD axis have specific cell adhesion properties (Ide et al., 1994; Tamura et al., 1997; Yajima et al., 1999; Wada et al., 2003), which are regulated by HoxA genes (Yokouchi et al., 1995; Stadler et al., 2001). During limb regeneration in urodeles, hoxa9 and hoxa13, members of the HoxA gene cluster, are activated with an overlapping expression pattern as in the developing limb bud (Gardiner et al., 1995). Although the relationships between HoxA genes and the cell surface properties during limb regeneration have not been elucidated, it is thought that blastema cells along the PD axis have different cell surface properties. When a donor blastema from a given position along the PD axis is grafted to the dorsal surface of a more proximal host blastema-stump junction, the donor blastema regenerates only those structures distal to its PD plane—e.g., when a wrist blastema is grafted to a mid-thigh blastema-stump junction, only the hand is regenerated from the graft, while the host blastema produces the entire hindlimb and carries or displaces the grafted regenerate to its appropriate limb level as the hindlimb forms (Crawford and Stocum, 1988). It has been suggested that position-specific cell surface properties regulate this phenomenon. When a blastema derived from a proximal amputation and a blastema derived from a distal amputation were joined together and cultured, the proximal blastema surrounded the distal blastema (Nardi and Stocum, 1983), indicating the presence of position-dependent differential cell adhesiveness with the more distal blastema showing stronger cell adhesion (Steinberg, 1970).

Misexpression of hoxa13 has been known to lead to suppression of zeugopod formation (Yokouchi et al., 1995), suggesting that Hox genes display “posterior prevalence” during limb development as has been observed during vertebrate body formation (limura and Pourque, 2007). To investigate the relationships between HoxA gene expression and PD patterning during X. laevis froglet limb regeneration, we have examined the expression profiles of hoxa13 and hoxa11 in detail. Posterior prevalence requires a level of Hox gene transcripts that is sufficient to repress 3’ Hox genes. We therefore also investigated the mRNA levels of hoxa13 and hoxa11 in tadpole and froglet blastemas. Furthermore, we performed cell sorting assays using blastemas at different levels along the PD axis, in order to examine the surface property of blastema cells. The expression domains of hoxa11 and hoxa13 never separated, and the expression level of hoxa13 in the froglet blastema was insufficient. Moreover, proper sorting along the PD axis did not occur. These findings suggest that re-expression of hoxa11 and hoxa13 during spike formation does not give rise to the subsequent cellular events that are required for PD axis formation, resulting in altered morphogenesis along the PD axis.

Materials and methods

Animals

X. laevis adults and froglets were obtained from domestic animal vendors. Fertilized eggs were obtained after natural mating between adult males and females stimulated with injections of 500 units of human chorionic gonadotropin (ASKA Pharmaceutical Co.). The fertilized eggs were then grown in our laboratory until they reached appropriate stages (Nieuwkoop and Faber, 1956). Tadpoles and froglets were kept at 24 °C in dechlorinated water. Limb buds and adult limbs were amputated after Xenopus tadpoles and froglets were anesthetized with 1:5,000 ethyl-3-aminobenzoate (Tokyo Chemical Industry) dissolved in Holtfreter’s solution. Tadpole limb buds were amputated with a surgical blade (FUTABA) at the presumptive ankle or knee using a previously published fate map (Tsushima, 1957). The tadpoles were then raised for 3–7 days until fixation. We used forelimbs for analyses of froglet limb regeneration (Suzuki et al., 2006) because hindlimbs are essential for swimming and hindlimb amputation often results in drowning or exsanguination (unpublished observations). Froglet forelimbs and hindlimbs both regenerate the same spike-like structure (Robinson and Allenby, 1974; Endo et al., 2000). Froglet forelimbs were amputated with ophthalmic scissors (Nisshin EM) at the wrist or elbow after which the froglets were raised for 7–14 days.

In situ hybridization

A partial cDNA encoding Xenopus EphA4 was amplified in a RT-PCR performed with mRNA extracted from stage 53 Xenopus limb buds (forward primer: 5’-CCATGGCAGCGATGAGCTTC-3’; reverse primer: 5’-GTCAGAGCTGTAAGCTGGG-3’). The PCR product was cloned into the pCRII TOPO vector (Invitrogen, La Jolla, CA) and sequenced. To synthesize an antisense RNA probe, the EphA4 plasmid was linearized with NotI and transcribed with SP6 RNA polymerase (Ambion). DIG-labeled antisense RNA probes for hoxa11, hoxa13, and sox9 were prepared as described previously (Endo et al., 2000; Yokoyama et al., 2002; Satoh et al., 2005b). In situ hybridizations were performed according to the method described by Yoshida et al. (1996) with minor modifications. Briefly, tissues were fixed with MEMFA (0.1 M MOPS at pH 7.4, 2 mM EGTA, 1 mM MgSO4, and 3.7% formaldehyde), embedded in Tissue-Tek O.C.T compound (Sakura), and sectioned at 10 μm in a cryostat (Leica). Proteinase K (Invitrogen) treatment was performed at 3.75 μg/ml (for tadpole blastemas) or 5 μg/ml (for froglet blastemas) for 7 min. The sections were hybridized overnight at 58 °C and washed at 55 °C with washing buffer as described by Yoshida et al. (1996). Anti-DIG Fab fragments conjugated with alkaline phosphatase (Roche) were diluted 1:2,000 in 0.125% Blocking Reagent/TBST and applied to the washed sections overnight at 4 °C. The colorimetric reaction was performed for 3 to 10 days using 5-bromo-4-chloro-3-indolylphosphate (Wako) and nitroblue tetrazolium chloride (Wako) as substrates. The sections were then rehydrated with PBS and mounted in glycerol.

Real-time RT-PCR

Total RNA was prepared using an RNasy mini kit according to the manufacturer’s protocol (Qiagen). Total RNA was prepared from tadpole and froglet blastemas while excluding stump tissues as much as possible. cDNA was prepared using SuperScript III (Invitrogen) following the manufacturer’s protocol. Two microliters of the cDNA was used for real-time PCRs, which contained the fluorescent dye SYBR Green to monitor DNA synthesis (SYBR Premix Ex taq, Takara Bio.) and primers specific for Xenopus hoxa11 (forward primer, 5’-CCCTAGTGTCGACGACTG-3’; reverse primer, 5’-GATTGGTATAACGCCACACT-3’). hoxa13 (forward primer, 5’-CAGGAGGCCTTGCAG-3’; reverse primer, 5’-CTCTGAGCTCCTGTGCT-3’), sox9 (forward primer, 5’-GCAATTTCAGGCCACAGAC-3’; reverse primer, 5’-GGTCTACCCCTCCTGAG-3’; and ribosomal L8 (forward primer, 5’-GTTGAGTTGCGGTAGATGATC-3’; reverse primer, 5’-AGCGAGCAGCTAAGCAGACC-3’). These primers were designed to include intronic sequences to avoid amplifying genomic DNA. PCRs were carried out using the Light Cycler system (Roche) and the following cycling protocol: a 95 °C denaturation step for 10 s followed by 40 cycles of denaturation at 95 °C (5 s), and annealing and extension at 60 °C (20 s). The fluorescent product was detected at the end of a
72 °C extension period. Gene expression was normalized to that of ribosomal L8, because ribosomal L8 mRNA levels remain relatively constant during development (Shi and Liang, 1994). The PCR products were subjected to a melting curve analysis, and the data were analyzed and quantified using Light Cycler software. The results are shown as values relative to the expression levels observed in tadpole blastemas 7 days post amputation (dpa) as standard samples. On standard samples of each figure, the values of the ratio were fixed as 1.0.

Cell culture

Preparation of single cell suspensions was performed using the method described by Yokoyama et al. (1998). Limb buds at stage 53 were divided into three regions of equal length along the PD axis (proximal, intermediate, and distal), and the proximal and distal regions were used for the experiments (see Fig. 5A). Stage 53 limb buds and froglet limbs were amputated at each level described above. Blastemas were isolated from each limb bud and limb. Proximal blastemas (amputated at the knee or elbow level) were also divided into three regions of equal length along the PD axis, and only the proximal and distal portions were used for the experiments (see Figs. 5B and C). Mesenchymal cells from the froglet blastema were isolated by removing the epidermis. Each sample was treated with 0.2% trypsin and 0.2% collagenase in Holtfreter’s solution for 2 hours to loosen the connections between the cells, and the solution was filtered by gentle pipetting. The resultant cell suspensions were obtain single cell suspensions, mesodermal tissues were dissociated into clusters (e.g., ectodermal cells).

The cells in the suspensions were counted using a hemocytometer (TATAI). Cell suspensions that had been labeled with a PKH2 fluorescence staining kit (ZYXANIS Cell Science) were mixed with the same number of unlabeled cells and placed in a small area of a culture dish with the aid of a stainless column. The culture dish was incubated overnight at 25 °C. Thereafter, the column was removed and 4% paraformaldehyde was added to fix the sample. After fixation, the cells were washed with PBS, and DAPI (final concentration, 0.5 μg/ml) was added to stain the cell nuclei.

Results

hoxa11 and hoxa13 expression during hindlimb development

Because hoxa11 and hoxa13 show characteristic expression patterns along the PD axis in chick and mouse limb buds, spatiotemporal changes in hoxa11 and hoxa13 expression are good indicators of PD pattern formation (Yokouchi et al., 1991; Nelson et al., 1996; Yashiro et al., 2004). We first investigated hoxa11 and hoxa13 expression in developing Xenopus hindlimb buds. In the cone-shaped, stage 50 limb bud, hoxa11 was expressed broadly in the distal limb bud mesenchyme (Fig. 1A), whereas the expression of hoxa13 was restricted to the most distal mesenchyme (Fig. 1B), resulting in a nested expression pattern. Subsequently, in the stage 52 limb bud, the gene expression domains were completely separated along the PD axis. hoxa11 was expressed in the subdistal region (Fig. 1C) and hoxa13 was expressed in the most distal region (Fig. 1D). These observations are consistent with results from previous studies that partially examined the expression patterns of these genes using whole-mount preparations (Blanco et al., 1998; Endo et al., 2000; Lombardo and Slack, 2001). Furthermore, the expression shift from a nested pattern to a separated pattern agrees with observations in chick and mouse limb buds, suggesting that the developmental changes in hoxa11 and hoxa13 expression are highly conserved in tetrapod limb buds.

hoxa11 and hoxa13 expression in the tadpole blastema

Because hoxa11 and hoxa13 are good markers of PD pattern formation in Xenopus limbs, we next examined the expression of these HoxA genes during limb regeneration. We observed the temporal and spatial expression patterns of these HoxA cluster genes in regenerating limb buds that had been amputated at stage 53, a period at which the limb buds can regenerate a complete pattern along the PD axis (Dent, 1962; Muneoka et al., 1986). In blastema 3 dpa, hoxa11 and hoxa13 showed overlapping expression domains in the distal blastema at both the ankle and knee levels (Figs. 2A–D). In particular, the expression domain of hoxa11 was broader than that of hoxa13 in blastemas at the knee level (Figs. 2C, D). The nested expression pattern was similar to that in the distal region of early-stage developing limb buds. Strikingly, blastemas that formed at the ankle level (i.e., only the autopod region was removed) expressed hoxa11 (Fig. 2A), although the expression of hoxa11 had disappeared in the autopod region at this stage (see Fig. 1C). Subsequently, the changes in the expression patterns of hoxa11 and hoxa13 recapitulated those observed during the normal developmental process (Figs. 2E–L). In blastemas at the ankle level, the expression of hoxa11 gradually disappeared (Fig. 2E) and was barely detectable in 7 dpa blastemas (Fig. 2I). On the other hand, the expression of hoxa13 was observed in the entire blastema (Fig. 2J). In blastemas at the knee level, hoxa11 expression disappeared from the distal region and remained in the proximal region (Fig. 2G), whereas the hoxa13 expression domain was shifted distally (Fig. 2H). At 7 dpa, these expression domains were separated (Figs. 2K, L). These observations indicate that in the tadpole, which is regeneration-competent, the expression patterns of hoxa11 and hoxa13 seem to mirror those observed during limb development. It is interesting that ankle level amputation resulted in the maintenance of hoxa11 expression.
Fig. 2. *hoxa11* and *hoxa13* expressions in tadpole blastemas. Blastemas were derived from amputations at the ankle level (A, B, E, I and J) or at the knee level (C, D, G, K and L). (A, C) *hoxa11* expression in 3 days post amputation (dpa) blastema. (B, D) *hoxa13* expression in 3 dpa blastema. (E, G) *hoxa11* expression in 5 dpa blastema. (F, H) *hoxa13* expression in 5 dpa blastema. (I, K) *hoxa11* expression in 7 dpa blastema. (J, L) *hoxa13* expression in 7 dpa blastema. Note that expression patterns of *hoxa11* and *hoxa13* during tadpole limb regeneration were similar to those of a developing limb bud (Fig. 1). Lines indicate the estimated amputation planes. Distal is to the top in all figures. Scale bar = 400 μm.

Fig. 3. *hoxa11* and *hoxa13* expressions in froglet blastemas. Blastemas were derived from amputations at the wrist level (A, B, E, F and H) or at the elbow level (C, D, G and H). (A, C) *hoxa11* expression in 7 days post amputation (dpa) blastema. (B, D) *hoxa13* expression in 7 dpa blastema. (E, G) *hoxa11* expression in 14 dpa blastema. (F, H) *hoxa13* expression in 14 dpa blastema. Note that *hoxa11* and *hoxa13* were reexpressed in the froglet blastema, but expression domains were never separated. Lines indicate the estimated amputation planes. Distal is to the top in all figures. Scale bar = 400 μm.
followed by its downregulation even though \textit{hoxa11} gene expression itself is not necessary for the formation of the autopod region (Davis et al., 1995).

\textit{hoxa11} and \textit{hoxa13} expression in the froglet blastema

As mentioned above, an amputated limb of a froglet regenerates a hypomorphic spike (Dent, 1962) that lacks joints along the PD axis (Satoh et al., 2005b). We hypothesized that the froglet blastema does not display positional information along the PD axis. To assess this hypothesis, we investigated the expression patterns of \textit{hoxa11} and \textit{hoxa13} in the froglet forelimb blastema. \textit{hoxa11} and \textit{hoxa13} were expressed broadly in 7 dpa blastemas at both the wrist and elbow levels (Figs. 3A–D). The overlapping expression pattern was similar to that in tadpole 3 dpa blastemas (see Figs. 2A–D). In 14 dpa blastemas, expression of \textit{hoxa13} was observed in the distal region (Figs. 3F, H). The expression of not only \textit{hoxa13} but also \textit{hoxa11} was observed distally, however, and the two expression domains were never separated along the PD axis (Figs. 3E–H). These observations suggest that positional information was disrupted in the froglet blastema, which consequently fails to form a normal PD axis.

Cartilage formation during limb regeneration

Our observations suggested a failure of PD axis formation, although it was possible that the results were merely due to slow changes in \textit{Hox} gene expression and PD axis formation. Thus, we hypothesized that the timing between pattern determination and chondrogenesis may be altered during froglet limb regeneration. To test this hypothesis, we analyzed the expression of \textit{sox9} as an early marker gene of chondrogenesis. In 3 dpa ankle level blastemas \textit{sox9} was examined in the area where \textit{hoxa11} and \textit{hoxa13} overlap (Figs. 2A, B). \textit{sox9} was expressed exclusively in the limb region proximal to the amputation plane (stump), but was absent from the blastema (Fig. 4A). Subsequently, at 5 dpa, low levels of \textit{sox9} expression were observed in the proximal region, whereas transcripts were still not detected in the distal region of the blastema (Fig. 4B). At this stage, the expression domains of \textit{hoxa11} and \textit{hoxa13} began to separate (Fig. 2E, F). Finally, at 7 dpa, \textit{sox9} expression was detected in a broad area in the central blastema (Fig. 4C). These observations suggest that during tadpole limb regeneration chondrogenesis begins after pattern determination (i.e., after the expression domains of \textit{hoxa11} and \textit{hoxa13} separate). On the other hand, in 7 dpa blastemas from froglets, \textit{sox9} was expressed in the blastema prematurely (Fig. 4D), although the expression domains of \textit{hoxa11} and \textit{hoxa13} still overlapped at this time point (Fig. 3A, B). The expression domain of \textit{sox9} expanded as regeneration progressed; in 14 dpa froglet blastemas, \textit{sox9} was expressed in a broad region in the blastema (Fig. 4E). These observations were supported by the results from a quantitative analysis (Fig. 7). Taken together, the data suggest that patterning along the PD axis does not proceed normally in the froglet blastema, which may result from an early onset of cartilage differentiation.

Differences in the cell affinity properties of tadpole and froglet blastemas

Cell sorting assays showed that chick limb bud cells along the PD axis have position-dependent cell surface properties (Ide et al., 1994; Wada and Ide, 1994; Ide et al., 1998). Thus, when limb bud cells from different positions along the PD axis are mixed, the cells will aggregate with other cells derived from the same position. In contrast,

![Fig. 4. Expression of cartilage marker gene, sox9, in tadpole and froglet blastemas. Limbs were amputated at the ankle level of tadpole hindlimb bud (A–C) or at the wrist level of froglet forelimb (D, E).](image-url)
when cells from the same position are combined, they will form uniform mixtures (Ide et al., 1994). Mesenchymal cells from Xenopus limb buds will also be sorted based on their positions along the PD axis (Koibuchi and Tochinai, 1998). To examine which downstream effectors were disrupted by the altered expression of hoxa13 and hoxa11 in the froglet blastema, we examined whether Xenopus blastema cells have position-dependent cell affinity properties.

Xenopus stage 53 hindlimb buds were divided into three equal regions along the PD axis (Fig. 5A), and cells from the first (Dis) and third (Pro) regions were mixed. When distal region cells were labeled with a fluorescent dye and mixed with unlabeled cells from the same distal region, the cultures showed uniform mixing of labeled and unlabeled cells (Fig. 5A, Dis vs. Dis). Labeled distal region cells and unlabeled proximal cells showed sorting, however (Fig. 5A, Dis vs. Pro). These results indicate that surfaces of Xenopus limb bud cells contain signals that indicate their position along the PD axis. Similar sorting was observed with blastema cells from different amputation levels at tadpole stage 53. We divided the blastema at the knee level into three PD parts. The distal region (Dis in Fig. 5B) has a hoxa13-single-positive condition similar to the ankle level blastema (DB), presumably giving rise to the autopod. The proximal region (Pro) has a hoxa11-single-positive condition that presumably gives rise to the zeugopod. We discarded the intermediate part (Int) between them. When labeled blastema cells derived from the ankle level (DB) were mixed with unlabeled distal region cells (Dis) from blastemas at the knee level (Fig. 5B), no or little sorting was observed (Fig. 5B, DB vs. Dis). When blastema cells at the ankle level (DB) and cells from the proximal region of blastemas (Pro) at the knee level were mixed, however, the cells displayed position-specific aggregation (Fig. 5B, DB vs. Pro). These results support the idea that tadpole blastema cells, like limb bud cells, show cell adhesion properties that are dependent on their positions along the PD axis. In particular, distal cells of blastemas at the knee level, which contribute to the distal regenerate (autopod region), seem to have the same property as those at the autopod level.

Next, we carried out similar experiments using froglet blastema cells, which will only regenerate a spike structure. We divided the froglet blastema at the elbow level into three parts corresponding to those in the tadpole blastemas (Compare Fig. 5C with Fig. 5B). When labeled blastema cells at the elbow level (DB in Fig. 5C) were mixed with unlabeled distal region cells (Dis) from blastemas at the elbow level, no or little segregation was observed (Fig. 5C, DB vs. Dis). Interestingly, when cells from blastemas at the wrist level were mixed with cells from the proximal region of blastemas (Pro) at the elbow level, no or little segregation was again observed (Fig. 5C, DB vs. Pro). Thus, froglet blastema cells may not have differential cell surface properties along the PD axis.

EphA4 expression in the froglet blastema

In the chick limb system, anti-EphA4 antibodies have been used to abolish cell sorting along the PD axis, and overexpression of ephrin-A2 was shown to modulate the affinities of mesenchymal cells that

Fig. 5. Differential cell adhesiveness along the proximal-distal axis. (A) Cell sorting assay in the tadpole limb bud. Limb buds at stage 53 were divided into three (proximal, intermediate and distal) regions of equal length along the PD axis. When labeled distal region (Dis) and non-labeled proximal regions (Pro) were mixed, sorting out was never observed (Dis vs. Dis). When labeled distal region (Dis) and non-labeled proximal regions (Pro) were mixed, sorting out was never observed (Dis vs. Dis). When labeled distal region (Dis) and non-labeled proximal regions (Pro) were mixed, sorting out was observed (Dis vs. Pro). (B) Cell sorting assay in the tadpole blastema. 7 days post amputation (dpa) blastemas from proximal (knee) level amputation (right) were divided into three (proximal, intermediate and distal) regions of equal length along the PD axis. When labeled 5 dpa distal (ankle level amputation) blastemas (DB) and non-labeled distal region of blastema derived from amputation at the proximal level (Dis) were mixed, sorting out was never observed (DB vs. Dis). When labeled 5 dpa distal blastemas (DB) and non-labeled proximal region of blastema derived from amputation at the proximal level (Pro) were mixed, sorting out was never observed (DB vs. Pro). (C) Cell sorting assay in the froglet blastema. 14 dpa blastemas from proximal (elbow) level amputation (right) were divided into three (proximal, intermediate and distal) regions of equal length along the PD axis. When labeled 14 dpa blastemas from distal (wrist level amputation) level amputation (DB) and non-labeled distal region of blastema derived from amputation at the proximal level (Dis) were mixed, sorting out was never observed (DB vs. Dis). When labeled 14 dpa blastemas from distal level amputation (DB) and non-labeled proximal region of blastema derived from amputation at the proximal level (Pro) were mixed, sorting out was never observed (DB vs. Pro). Red bar indicates amputation plane. Black area in the pictures is filled with unlabeled cells.
differentiate into autopod elements (Wada et al., 1998, 2003). These results strongly suggest that ephrinA (ligand) and EphA (receptor tyrosine kinase expressed in the distal limb bud) are involved in cell sorting along the limb PD axis (Wada et al., 2003).

These results together with studies showing that hoxa13 regulates cell surface properties (Yokouchi et al. 1995; Stadler et al. 2001) led us to analyze ephrinA/EphA signaling in the regenerating blastema. We found that EphA4 was expressed in mesenchymal cells at the distal limb bud during Xenopus hindlimb development (stage 53, Fig. 6A). The expression of EphA4 was also reactivated 3 dpa in the tadpole blastema at the ankle level (Fig. 6B). The EphA4-expressing domain was shifted distally and was restricted to the distal blastema at 5 dpa (Fig. 6C). This distal expression domain resembles that of hoxa13 in the tadpole blastema (compare Fig. 6C with Fig. 2F). In contrast to the tadpole blastema, we did not detect EphA4 expression in the froglet limb blastema. At 7 dpa and 14 dpa, no signal was detected with an EphA4-specific probe although nonspecific staining was observed in secretory glands (Figs. 6D and E).

Quantitative analysis of hoxa11 and hoxa13 expression

In a previous in vitro study, limb mesenchymal cells from a hoxa13 mutant mouse did not sort based on their positions along the PD axis (Stadler et al., 2001), and hoxa13 misexpression has suggested that the protein product regulates the position-specific signals along the PD axis (Yokouchi et al., 1995). We hypothesized that the hoxa13 expression level in the froglet blastema was low compared with that in the tadpole blastema and that this lower expression level disrupted cell sorting, resulting in the patternless phenotype. To assess this hypothesis, we examined the expression levels of hoxa11, hoxa13, and sox9 in blastemas at the ankle or wrist level using real-time RT-PCR analysis. hoxa11 expression levels were higher in froglet 14 dpa blastemas and no significant difference was observed between froglet later stage blastemas and tadpole 7 dpa blastemas (Fig. 7A). hoxa13 expression was also weak in froglet 7 dpa blastemas compared with that in tadpole blastemas, although the expression levels increased in froglet 14 dpa blastemas (Fig. 7B). hoxa13 expression levels, however, were significantly lower in froglet blastemas than in tadpole blastemas. These results indicate that although the re-expression of hoxa13 was detectable, hoxa13 mRNA levels were relatively low. sox9 expression in froglet blastemas was more robust compared with tadpole blastemas (Fig. 7C), while the expression domains of hoxa11 and hoxa13 did not separate (Figs. 3E, F). This observation of chondrogenesis (sox9 expression) prior to the completion of pattern formation (separation of the hoxa11 and hoxa13 expression domains) was consistent with our in situ hybridization results (Fig. 4).

Discussion

Differences in HoxA gene expression during limb development and regeneration in regenerative and nonregenerative limbs

As shown in Fig. 1, a nested expression pattern of the Abdominal-B type genes hoxa11 and hoxa13 was observed in the early Xenopus limb bud. These expression domains then subsequently separated along the PD axis. Thus, the expression of hoxa11 of hoxa13 in the developing Xenopus limb bud is consistent with results from previous studies (Blanco et al., 1998; Endo et al., 2000; Lombardo and Slack, 2001). Furthermore, the temporal change in expression domains was similar to that reported in amniotes (Yokouchi et al., 1991; Nelson et al., 1996; Yashiro et al., 2004), suggesting that hoxa11 and hoxa13 functions during PD axis patterning are conserved among tetrapods. Importantly, in teleost pectoral fin buds, both hoxa11 and hoxa13 can be detected distally, but the overlapping domains do not completely separate along...
Fig. 7. Quantitative analysis of hoxa11 (A), hoxa13 (B) and sox9 (C) gene expression levels in tadpole and froglet blastemas. Each gene expression level was measured by real-time RT-PCR using specific primers. The results were firstly normalized to ribosomal L8 and then represented as values relative to the expression levels in tadpole 7 dpa blastemas. Values represent the means of three independent experiments. Error bars indicate standard deviations. Data were analyzed by Welch's t-test, and differences were found to be statistically significant (⁎P<0.05).

Previous studies of anuran tadpoles and urodeles, both of which are able to regenerate their limbs, showed that at least 24 of 39 Hox genes were expressed in the blastema (reviewed by Gardiner and Bryant 2007). Although hoxa11 and hoxa13 expression was observed (Beauchemin et al., 1994; Gardiner et al., 1995; Christen et al., 2003), the spatial expression pattern of hoxa11 was not examined during limb regeneration. According to our data, in the early stage tadpole blastema, hoxa11 is expressed even when the limb bud is amputated at the ankle level (i.e., the zeugopod—autopod boundary). In the autopod region (i.e., distal to the ankle) of a developing Xenopus limb bud at stage 52, hoxa13 is expressed strongly, whereas the expression of hoxa11 was hardly detected (Fig. 1C, D). After ankle level amputation at stage 53, however, blastema cells express hoxa11 in a broad area, and its expression domain overlaps with that of hoxa13 (Fig. 2A). Then, the expression of hoxa11 was no longer observed in the distal blastema (Figs. 2E, I). Although it is possible that the source of blastema cells at the wrist level is already hoxa11-positive and that the hoxa11-positive blastema cells begins to form the autopod, this appearance and cessation of hoxa11 expression in the autopod blastema is interesting, because hoxa11 itself is not essential for the autopod structure (Davis et al., 1995). During limb regeneration in axolotls, early blastema cells were suggested to have a distal identity because hoxa9 and hoxa13 are expressed synchronously, similar to the distal limb bud (Gardiner et al., 1995). The expression patterns of hoxa11 and hoxa13 during tadpole regeneration are consistent with this hypothesis. Alternatively, hoxa11 expression may be initiated before hoxa13 expression in the earlier blastema, which we could not detect in our experiments. We therefore do not exclude the possibility that the early process of PD patterning in limb regeneration recapitulates the developmental process, and the nested pattern of hoxa11/hoxa13 supports this idea. Because of the genomic structure of these genes, re-expression of 3′ Hox genes, such as hoxa11, may be necessary to activate more 5′ Hox genes, including hoxa13. To address this hypothesis, it would be interesting to investigate the precise expression patterns and chromatin states of various Hox genes. The overlapping expression of hoxa11 and hoxa13, however, may simply reflect that stump cells, which express hoxa11, supply the blastemas. To address this possibility, it is necessary to investigate hoxa11 expression after amputation at the hand level, in which hoxa11 is not expressed.

Compared with tadpole blastemas, froglet limb blastemas showed different hoxa11 and hoxa13 expression profiles during regeneration. In early stage blastemas, hoxa11 and hoxa13 expression domains clearly overlapped (Figs. 3A–D), suggesting that froglet blastemas begin to carry out at least early PD axis formation. Previous studies showed that froglet blastemas have some epimorphic characteristics that are similar to those of early stage urodele blastemas—e.g., vigorous cell proliferation, gene expression indicating an undifferentiated state, and a dependence on nerve activity (Endo et al., 2000; Suzuki et al., 2005, 2007). Reactivation of hoxa11 and hoxa13 expression indicates that these properties may also include the initiation of PD axis formation. However, the nested pattern of hoxa11 and hoxa13 expression was not obvious, hoxa11 is expressed in the distal region of the froglet blastema, and the hoxa11 and hoxa13 expression domains did not separate along the PD axis. These results suggest that PD axis formation during froglet limb regeneration is disrupted. Cells that express either hoxa11 or hoxa13 may be mixed in the same blastema, or the blastema cells may still express both hoxa11 and hoxa13. The cell sorting assay supports the latter possibility in the froglet blastema. Thus, the change in HoxA gene expression from hoxa11/hoxa13 double-positive to hoxa11 or hoxa13 single-positive may not occur. These data together with our previous results suggesting that AP pattern formation and DV pattern formation do not occur appropriately in regenerating froglets (Endo et al., 1997; Matsuda et al., 2001; Yakushiji et al., 2007) demonstrate deficient pattern formation along all three axes. Whether these defects are interrelated remains unknown, and further investigations are required to show whether rescuing one axis also allows proper patterning along the other axes.

the PD axis (Sordino et al., 1996; Neumann et al., 1999). The origin of autopods during vertebrate evolution and the causative molecular mechanisms have been the subject of much debate. Developing autopods during vertebrate evolution and the causative molecular records with incomplete autopods in the distal pectoral fins, such as lungfish, have not been reported, fossils with incomplete autopods in the distal pectoral fins (Shubin et al., 2006; Boisvert et al., 2008) suggest successive steps in the transition from fins to limbs. Our observations confirm that PD axis formation, including the dynamic hoxa11 and hoxa13 expression profiles, is conserved among living tetrapods, suggesting a close relationship between the origin of autopods and the roles of hoxa11 and hoxa13 during PD axis formation.

—
Potential contributions of hoxa11 and hoxa13 expression to defective patterning

Chick limb bud cells exhibit different cell affinity properties along the PD axis, which is important for PD pattern formation (Ide et al., 1994; Wada et al., 1998; Sato-Maeda and Ide, 1998). We have shown the presence of different cell affinities along the PD axis in Xenopus tadpole limb buds (Fig. 5A Dis vs. Dis, Dis vs. Pro). Furthermore, Xenopus tadpole blastema cells from different positions along the PD axis sorted in our assay (Fig. 5B Db vs. Dis, Db vs. Pro), suggesting that pattern-regenerating blastema cells also have position-dependent cell affinities. This is supported by the results from an in vivo assay showing that the adhesive properties of axolotl blastema cells form a gradient along the PD axis (Nardi and Stocum, 1983).

Although both limb bud and blastema cells at the tadpole stage have position-dependent cell affinities, froglet blastema cells did not display this property (Fig. 5C DB vs. Dis, DB vs. Pro). This indicates that defects in PD patterning during froglet limb regeneration are mediated by altered cell surface properties. We propose that the cell surfaces of blastema mesenchymal cells in the froglet blastema are homogeneous, and do not display PD positional information. This may result in the formation of spike structures wherever the froglet limb is amputated.

Our results also revealed an absence of EphA4 expression in the froglet blastema (Figs. 6D, E), which correlates with the lack of cell sorting, ephrin/Eph signaling is known to be involved in the sorting of limb mesenchymal cells along the PD axis and limb patterning (Wada et al., 1998, 2003). In hoxa13 mutant mice, for example, EphA7 expression is markedly reduced and the mutant mesenchyme cells in the future autopod region fail to sort normally, resulting in impaired autopod formation (Stadler et al., 2001). Interestingly, Eph receptors are direct downstream targets of hoxa13 in the developing limb (Salsi and Zappavigna, 2006). These results support the idea that hoxa13 regulates cell surface properties via ephrin/Eph signaling. We demonstrated that the hoxa11 and hoxa13 expression domains never separated and that hoxa13 mRNA levels were low in the froglet blastema (Figs. 3 and 7B). Thus, downregulation of hoxa13 expression may disrupt ephrin/Eph signaling, which in turn prevents cell sorting and PD pattern formation.

Possible causes of altered hoxa11 and hoxa13 expression

Several possibilities may have resulted in the differences in the hoxa11 and hoxa13 expression patterns. For instance, changes in the signaling cascades upstream of the HoxA genes, such as the retinoic acid (RA) pathway, may disrupt PD patterning. RA is involved in PD patterning during both limb development and regeneration (Maden, 1982; Crawford and Stocum, 1988; Tamura et al., 1997; Maden and Hind, 2003; Yashiro et al., 2004). Cyp26b1, which encodes a cytochrome P450 enzyme that inactivates RA, is expressed in the distal region of the developing limb bud (MacLean et al., 2001); mice lacking this gene show RA-related signaling in the distal end of the developing limb and PD pattern defects (Yashiro et al., 2004). Furthermore, excess levels of RA proximalized distal blastemas during urodele limb regeneration, and the degree of proximalization increased with the RA dose (Maden, 1982; Crawford and Stocum, 1988). It is possible that changes in the RA gradient in Xenopus froglet blastema have resulted in defective PD patterning. RA concentrations in Xenopus blastemas have been measured along the AP axis, which did not show a RA gradient (Scadding and Maden, 1994), whereas RA concentrations along the PD axis have not been examined. Future studies may also investigate the expression of RA related metabolic enzymes and differences in RA activity along the PD axis in both tadpole and froglet blastemas.

A second possibility is that a shift in the timing between pattern formation (i.e., separated hoxa11 and hoxa13 expression domains) and cell differentiation (i.e., chondrogenesis) causes aberrant PD patterning. In the tadpole developing limb bud and regenerating blastema, pattern formation along the PD axis is followed by cell differentiation. In the froglet blastema, differentiation of the cells into chondrocytes begins before PD patterning is complete (compare Figs. 3 and 4). Premature chondrogenesis may disturb PD patterning. Axolotl and newt limbs regenerate all of the tissue types, including cartilage and muscle, whereas the froglet stump develops into a cartilage-rich structure that lacks muscle tissue (Korneluk and Liversage, 1984; Satoh et al., 2005a). Thus, enhanced cartilage differentiation in the froglet blastema may perturb PD patterning, resulting in a patternless spike.

A third possibility is altered epigenetic regulation of gene expression. In the e1f-α:EGFP transgenic zebrafish line, in which EGFP is ubiquitously expressed in the embryo, the transgene is highly methylated and inactive in the adult caudal fin (Thummel et al., 2006). Interestingly, the transgene is demethylated and reactivated in the regenerating caudal fin blastema. These observations suggest that the complete regeneration of the zebrafish fin requires epigenetic control of gene expression, and in particular DNA demethylation-mediated transcriptional reactivation. On the other hand, the Xenopus froglet limb blastema does not express shh and the shh gene is highly methylated in the limb-specific enhancer region. This demonstrates that the silenced shh gene is not reactivated in the froglet limb (Yakushiji et al., 2007; Yakushiji et al., 2009). Hox genes are also epigenetically regulated by Polycomb group (PcG) and Trithorax group (trxG) proteins, which modify chromatin to induce the repression and activation of Hox genes, respectively (Orlando, 2003; Simon and Tamkun, 2003). Altered epigenetic regulation, such as changes in PcG genes that negatively regulate hoxa11 expression in the autopod region, may disrupt the dynamic profile of Hox gene expression in the froglet blastema.

These hypotheses are not mutually exclusive, and multiple factors might contribute to the limited regenerative ability of Xenopus froglet limbs. Investigations into this limited regenerative ability should lead to a better understanding of differences between regenerative and nonregenerative limbs. Our results provide evidence that defective PD patterning is a major reason that froglet limbs cannot regenerate. Further studies examining these three possibilities may elucidate methods to rescue pattern formation not only in Xenopus froglet limbs but also in nonregenerative limbs in other vertebrates, as well as the mechanisms governing pattern formation during organogenesis and organ regeneration.

Acknowledgments

We are grateful to Drs. Hiroyuki Ide, Kosei Sato, Gembu Abe and Hiroaki Yamamoto for helpful comments and discussion. We also thank Ellen Chernoff for critical reading of the manuscript and valuable comments. This work was supported by research grants from the Ministry of Education, Science, Sports and Culture of Japan, KAKENHI (Grant-in-Aid for Scientific Research) on Priority Areas “Comparative Genomics,” and Toray Science Foundation.

References

