8 research outputs found

    A clinically compatible drug-screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis

    Get PDF
    We report a medium-throughput drug-screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood-brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere.Acknowledgments: This work was supported by MINECO (SAF2017-89643-R, SAF2014-57243-R, SAF2015-62547-ERC) (M.V.), Fundacion FERO (IX FERO Grant for Research in Oncology) (M.V.), Fundacio La Marato de TV3 (141) (M.V.), Melanoma Research Alliance (Bristol-Myers Squibb-Melanoma Research Alliance Young Investigator Award 2017 (https://doi.org/10.48050/pc.gr.75716)) (M.V.), Beug Foundation (Prize for Metastasis Research 2017) (M.V.), Fundacion Ramon Areces (CIVP19S8163) (M.V.) and CIVP20S10662 (E.O.P.), Worldwide Cancer Research (19-0177) (M.V.), H2020-FETOPEN (828972) (M.V.), Cancer Research Institute (Clinic and Laboratory Integration Program CRI Award 2018 (54545)) (M.V.), AECC (Coordinated Translational Groups 2017 (GCTRA16015SEOA) (M.V.), LAB AECC 2019 (LABAE19002-VALI) (M.V.), ERC CoG (864759) (M.V.), Sophien-Stiftung zur Förderung der klinischen Krebsforschung (T.W.), Promedica Stiftung (T.W.), Stiftung f€ur angewandte Krebsforschung (T.W.), Forschungskredit of the University of Zurich (FK-18-054) (T.W.), Betty and David Koetser Foundation for Brain Research (T.W.), Foundation for Applied Cancer Research in Zurich (T.W., M.W.), Comunidad de Madrid (S2017/BMD-3867 RENIM-CM and Y2018/NMT-4949 NanoLiver-CM) and European structural and investment funds (M.D.), ISCIII (PT20/00044) co-funded by FEDER “A way of making Europe” (M.D.), Ministero dell’Istruzione, dell’Universita e della Ricerca-MIUR, “Dipartimenti di Eccellenza 2018-2022”, (D15D18000410001) (L.B. and P.C.), Science Foundation Ireland Frontiers for the Future Award (19/FFP/6443) (L.Y.), Science Foundation Ireland Strategic Partnership Programme, Precision Oncology Ireland (18/SPP/3522) (L.Y.), Breast Cancer Now Fellowship Award/ with the generous support of Walk the Walk (2019AugSF1310) (D.V.), La Caixa-Severo Ochoa International PhD Program Fellowship (LCF/BQ/SO16/52270014) (L.Z.), La Caixa International PhD Program Fellowship-Marie Sklodowska-Curie (LCF/BQ/DI17/11620028) (P.G-G), MINECO-Severo Ochoa PhD Fellowship (BES-2017-081995) (L.A-E.), AECC Postdoctoral Fellowship (POSTD19016PRIE) (N.P.), Boehringer Ingelheim Fonds MD fellowship (L.M.). The contribution of the Experimental Therapeutics Programme was supported by core funding from the Spanish National Cancer Research Center (CNIO). CNIO is supported by the ISCIII, the Ministerio de Ciencia e Innovacion, and is a Severo Ochoa Center of Excellence (SEV-2015-0510). The CNIC is supported by the ISCIII, the Ministerio de Ciencia e Innovacion and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). M.V. was named Ramon y Cajal Investigator (RYC-2013-13365) and is member of EMBO YIP (4053)

    A clinically compatible drug-screening platform based on organotypic cultures identifies vulnerabilities to prevent and treat brain metastasis

    Get PDF
    We report a medium‐throughput drug‐screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood–brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug‐screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere

    Stratification of radiosensitive brain metastases based on an actionable S100A9/RAGE resistance mechanism

    Get PDF
    © The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Whole-brain radiotherapy (WBRT) is the treatment backbone for many patients with brain metastasis; however, its efficacy in preventing disease progression and the associated toxicity have questioned the clinical impact of this approach and emphasized the need for alternative treatments. Given the limited therapeutic options available for these patients and the poor understanding of the molecular mechanisms underlying the resistance of metastatic lesions to WBRT, we sought to uncover actionable targets and biomarkers that could help to refine patient selection. Through an unbiased analysis of experimental in vivo models of brain metastasis resistant to WBRT, we identified activation of the S100A9-RAGE-NF-κB-JunB pathway in brain metastases as a potential mediator of resistance in this organ. Targeting this pathway genetically or pharmacologically was sufficient to revert the WBRT resistance and increase therapeutic benefits in vivo at lower doses of radiation. In patients with primary melanoma, lung or breast adenocarcinoma developing brain metastasis, endogenous S100A9 levels in brain lesions correlated with clinical response to WBRT and underscored the potential of S100A9 levels in the blood as a noninvasive biomarker. Collectively, we provide a molecular framework to personalize WBRT and improve its efficacy through combination with a radiosensitizer that balances therapeutic benefit and toxicity.info:eu-repo/semantics/publishedVersio

    Determination of viability of human cartilage allografts by a rapid and quantitative method not requiring cartilage digestion

    No full text
    Fresh osteochondral allograft transplantation is increasingly used for the treatment of cartilage pathologies of the knee. It is believed that transplantation success depends on the presence of viable chondrocytes in the graft, but methods to evaluate graft viability require the isolation of chondrocytes by enzymatic digestion of the cartilage and/or the use of radioactive precursors. We have adapted the well-known cell viability assay based on the reduction of tetrazolium derivatives to evaluate cartilage viability. We took advantage from the histological properties of cartilage tissue and the fact that some tetrazolium derivatives (e.g., WST-1, XTT) give soluble reduction products that can permeate the hyaline cartilage matrix. We have validated this assay in human cartilage explants from arthrotomy interventions and deceased donors, measuring the reduced product in the explant supernatant. Using this method we have compared the performance of several culture media in cartilage viability. From those tested, DMEM supplemented with fetal bovine serum results in higher viability of the cartilage and the explants remain viable at least 15 days in culture at 37°C. Cartilage cells continued expressing chondrocyte-specific genes, suggesting the maintenance of chondrogenic pheno-type. The described method offers a quantitative and convenient method to measure the viability of human cartilage grafts. Copyright © 2008 Cognizant Comm. Corp.Peer Reviewe

    Regulation of c-Myc and Max in Megakaryocytic and Monocytic-Macrophagic Differentiation of K562 Cells Induced by Protein Kinase C Modifiers: c-Myc Is Down-Regulated but Does Not Inhibit Differentiation

    Get PDF
    16 pages, 12 figures, 1 table.We have studied the regulation and role of c-Myc and Max in the differentiation pathways induced in K562 cells by 12-O-tetradecanoyl phorbol-13 acetate (TPA) and staurosporine, an activator and inhibitor, respectively, of protein kinase C (PKC). We found that staurosporine induced megakaryocytic differentiation, as revealed by the cellular ultrastructure, platelet formation, and DNA endoreduplication. In contrast, TPA induced a differentiated phenotype that more closely resembled that of the monocyte-macrophage lineage. c-myc expression was down-regulated in K562 differentiated by both TPA and staurosporine, whereas max expression did not change in either case. Although PKC enzymatic activity was low in cells terminally differentiated with TPA and staurosporine, inhibition of PKC activity by itself did not induce c-myc down-regulation. We conclude that the c-myc gene is switched off as a consequence of the differentiation process triggered by these drugs in a manner independent from PKC. Ectopic overexpression of c-Myc in K562 cells did not affect the monocytic-macrophagic and megakaryocytic differentiation, indicating that c-Myc suppression is not required for these processes in K562. Similarly, both differentiation pathways were not affected by Max overexpression or by concomitant overexpression of c-Myc and Max. This result is in contrast with the inhibition of erythroid differentiation of K562 exerted by c-Myc, suggesting divergent roles for c-Myc/Max, depending on the differentiation pathway.Supported by Grant CICYT-SAF96–0083 from the Spanish government and Biomed 96-3532 from the European Community. A. L. and P. G. are recipients of fellowships of the Spanish Ministerio de Educación y Cultura, and M. C. is the recipient of a fellowship from Gobierno Vasco.Peer reviewe

    Subcellular localization determines the protective effects of activated ERK2 against distinct apoptogenic stimuli in myeloid leukemia cells

    No full text
    ERKs, mitogen-activated protein kinases, are well characterized as key mediators in the conveyance of signals that promote cell survival in cells of hemopoietic origin, a key factor in the upbringing of leukemogenesis. It is also well known that ERKs phosphorylate a wide array of substrates distributed throughout distinct cellular locations such as the nucleus, cytoplasm, and cell periphery, but the relative contribution of these compartmentalized signal components to the overall survival signal generated by activation of ERKs has yet to be established. To this end, we have utilized constitutively activated forms of ERK2, whose expression is restricted to the nucleus or to the cytoplasm, to investigate the consequences of compartmentalized activation of ERK in the survival of chronic myelogenous leukemia cells subjected to distinct apoptogenic stimuli. We show that cytoplasmic ERK2 activity protected against apoptosis caused by prolonged serum starvation, whereas ERK2 activation restricted to the nucleus antagonized apoptosis induced by the Bcr-Abl inhibitor STI571. On the other hand, neither cytoplasmic nor nuclear ERK2 activities were effective in counteracting apoptosis induced by UV light. These results demonstrate that the protective effects of ERK2 against defined apoptogenic stimuli are strictly dependent on the cellular localization where ERK activation takes place. Furthermore, we present evidence suggesting that the complex IκB-NFκB participates on ERK2-mediated survival mechanisms, in a fashion dependent on the cellular location where ERK2 is active and on the causative apoptogenic stimulus.This work was supported by a grant from Fundación Marcelino Botín, Spanish Ministry of Education Grants BMC2002-0102 (to P. C.) and SAF02-4193 (to J. L.), and by Spanish Ministry of Health Grant FIS PI020774 (to R. P.).Peer Reviewe

    Pim 1 kinase inhibitor ETP-45299 suppresses cellular proliferation and synergizes with PI3K inhibition

    No full text
    9 páginas, 4 figuras, 2 tablas.The serine/threonine Pim 1 kinase is an oncogene whose expression is deregulated in several human cancers. Overexpression of Pim 1 facilitates cell cycle progression and suppresses apoptosis. Hence pharmacologic inhibitors of Pim 1 are of therapeutic interest for cancer. ETP-45299 is a potent and selective inhibitor of Pim 1 that inhibits the phosphorylation of Bad and 4EBP1 in cells and suppresses the proliferation of several non-solid and solid human tumor cell lines. The combination of the PI3K inhibitor GDC-0941 with ETP-45299 was strongly synergistic in MV-4-11 AML cells, indicating that the combination of selective Pim kinase inhibitors and PI3K inhibitor could have clinical benefit.Peer reviewe
    corecore