8 research outputs found

    Proteomic analysis of integrin-associated complexes from mesenchymal stem cells

    Get PDF
    PURPOSE: Multipotent mesenchymal stem cells (MSCs) have the capability to differentiate down adipocyte, osteocyte and chondrocyte lineages and as such offer a range of potential therapeutic applications. The composition and stiffness of the extracellular matrix (ECM) environment that surrounds cells dictates their transcriptional programme, thereby affecting stem cell lineage decision‐making. Cells sense force via linkages between themselves and their microenvironment, and this is transmitted by integrin receptors and associated adhesion signalling complexes. To identify regulators of MSC force sensing, we sought to catalogue MSC integrin‐associated adhesion complex composition. EXPERIMENTAL DESIGN: Adhesion complexes formed by MSCs plated on the ECM ligand fibronectin were isolated and characterised by MS. Identified proteins were interrogated by comparison to a literature‐based reference set of cell adhesion‐related components and using ontological and protein–protein interaction network analyses. RESULTS: Adhesion complex‐specific proteins in MSCs were identified that comprised predominantly cell adhesion‐related adaptors and actin cytoskeleton regulators. Furthermore, LIM domain‐containing proteins in MSC adhesion complexes were highlighted, which may act as force‐sensing components. CONCLUSION AND CLINICAL RELEVANCE: These data provide a valuable resource of information regarding the molecular connections that link integrins and adhesion signalling in MSCs, and as such may present novel opportunities for therapeutic intervention

    PAX4 loss of function increases diabetes risk by altering human pancreatic endocrine cell development

    No full text
    Abstract The coding variant (p.Arg192His) in the transcription factor PAX4 is associated with an altered risk for type 2 diabetes (T2D) in East Asian populations. In mice, Pax4 is essential for beta cell formation but its role on human beta cell development and/or function is unknown. Participants carrying the PAX4 p.His192 allele exhibited decreased pancreatic beta cell function compared to homozygotes for the p.192Arg allele in a cross-sectional study in which we carried out an intravenous glucose tolerance test and an oral glucose tolerance test. In a pedigree of a patient with young onset diabetes, several members carry a newly identified p.Tyr186X allele. In the human beta cell model, EndoC-ÎČH1, PAX4 knockdown led to impaired insulin secretion, reduced total insulin content, and altered hormone gene expression. Deletion of PAX4 in human induced pluripotent stem cell (hiPSC)-derived islet-like cells resulted in derepression of alpha cell gene expression. In vitro differentiation of hiPSCs carrying PAX4 p.His192 and p.X186 risk alleles exhibited increased polyhormonal endocrine cell formation and reduced insulin content that can be reversed with gene correction. Together, we demonstrate the role of PAX4 in human endocrine cell development, beta cell function, and its contribution to T2D-risk

    Regulation of cell-matrix adhesion networks:insights from proteomics

    No full text
    corecore